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Continuation of Differentiation Chapter 

Parametric Form : If the variables x and y are explicity expressed in terms of a third 

variable say x = f(t) and y = g(t), then x and y are called parametric functions or parametric 

equations and t is called the parameter. 

Ex. If  x = cosθ – cos2θ and y = sinθ – sin2θ, then find dy/dx 

Differentiating  both x and y with respect to x  

𝑑𝑥

𝑑𝜃
 = - sinθ + 2sin2θ ;  

𝑑𝑦

𝑑𝜃
 = cosθ – 2cos2θ  

Therefore,  
𝑑𝑦

𝑑𝑥
 = 

cosθ – 2cos2θ 

− sinθ + 2sin2θ
 

Logarithmic Differentiation :  It is a technique to differentiate functions of  the form            

y = [ u (x)]v(x). 

Ex.  Differentiate 𝑎𝑥 w.r.t x, where a is a positive constant. 

Let  y = 𝑎𝑥 taking log on both sides  

logy  = log 𝑎𝑥 

        =  x loga  

Differentiating both the sides w.r.t x  

𝑑(𝑙𝑜𝑔𝑦)

𝑑𝑥
=  

𝑑

𝑑𝑥
( xloga) 

1

𝑦
 
dy

dx
 = loga                                               [ x 

𝑑(𝑙𝑜𝑔𝑎) 

𝑑𝑥
 + loga

𝑑𝑥

𝑑𝑥
 ] 

dy

dx
 = y loga  

    = 𝑎𝑥loga  



  𝑑(𝑎𝑥 )

𝑑𝑥
  = 𝑎𝑥𝑙𝑜𝑔𝑎 

Differentiation of a function u(x) with respect to another function v(x) 

Ex : Find the derivative of sin𝑥2 with respect to 𝑥2. 

Let u = sin𝑥2 and v = 𝑥2 

Differentiating both the sides of u and v with respect to x  

𝑑𝑢

𝑑𝑥
 = 2x cos𝑥2 and  

𝑑𝑣

𝑑𝑥
 = 2x 

Then, 
𝑑𝑢

𝑑𝑣
   = 

𝑑𝑢

𝑑𝑥
 / 

𝑑𝑣

𝑑𝑥
 

   
𝑑𝑢

𝑑𝑣
   = 

2xcos𝑥2

2𝑥
 = cos𝑥2 

Second Order Derivative: The second order derivative of a function is the derivative of the 

first order. 

Let y = f(x) then y’ = f ’(x) i.e   
dy

 dx
  = f ’(x) 

𝑑

𝑑𝑥
( 

𝑑𝑦

𝑑𝑥
) = 

𝑑

𝑑𝑥
[f ’(x)] 

⇒   
𝑑2𝑦

𝑑𝑥2   = f ’’(x) 

Ex.       y = sin(logx) 

Differentiating it w.r.t. x  

𝑑𝑦

𝑑𝑥
 = cos(logx)

1

𝑥
  

Again differentiating it with respect to x 

⇒       
𝑑

𝑑𝑥
[

𝑑𝑦

𝑑𝑥
] = 

𝑥[−sin(𝑙𝑜𝑔𝑥)
1

𝑥
]−cos(𝑙𝑜𝑔𝑥)

𝑥2  

⇒    
𝑑2𝑦

𝑑𝑥2      = 
−[sin(𝑙𝑜𝑔𝑥)+cos(𝑙𝑜𝑔𝑥)]

𝑥2  

Exercise 

Find 
dy

dx
 

1. x = 
1

1−𝑡2  , y = 1+ 𝑡2 

2. x = a cos3t  , y = a sin3t 

Differentiate: 

1. tan-1 2𝑥

1−𝑥2 w.r.t. tan-1x  

2. sinx3  w..r.t sec2x2 



Find the derivative of the following functions: 

• √(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 4) 

• (tanx) logx 

• (logx)x 

• If y = 𝑥𝑥𝑥𝑥……..∞

, then show that 
dy

dx
 =   

𝑦2

𝑥( 1−𝑦𝑙𝑜𝑔𝑥)
 

Find the second derivative of the following functions: 

1. logx 

2. sin-1x 

3. If y = a𝑒𝑚𝑥+ b 𝑒−𝑚𝑥, prove that 
𝑑2𝑦

𝑑𝑥2
  - m2y = 0 

 

MEAN VALUE THEOREM 

Rolle’s Theorem: 

If function f(x) is (i) continuous in the closed interval [a,b] , 

(ii) differentiable in an open interval (a,b) and f(a) = f(b) 

 then there will be atleast one point c , where a < c < b such that  

f’(c ) = 0    

Example: 

Verify  Rolle’s Theorem for the function  

f(x) = ex(sinx – cosx) on [
𝜋

4
,

5𝜋

4
 ]  

since ex ,sinx and cosx are continuous functions in [
𝜋

4
,

5𝜋

4
 ] 

so f(x) is continuous in [
𝜋

4
,

5𝜋

4
 ]                                              

also, ex ,sinx and cosx are differentiable in the ( 
𝜋

4
,

5𝜋

4
 ) 

Hence, f(x) is differentiable in ( 
𝜋

4
,

5𝜋

4
 )   

Now, f(
𝜋

4
) = 𝑒𝜋/4(sin

𝜋

4
 – cos

𝜋

4
) = 𝑒𝜋/4(

1

√2
 - 

1

√2
) = 0 

f(
5𝜋

4
)  = 𝑒5𝜋/4(sin

5𝜋

4
 – cos

5𝜋

4
) 

=  𝑒5𝜋/4 ( −
1

√2
 + 

1

√2
) =0 

Therefore, f(
𝜋

4
) =f (

5𝜋

4
)  



All three conditions are satisfied. So, there exists a point cϵ ( 
𝜋

4
,

5𝜋

4
 ), such that f’( c)  = 0 

Now, f’(x) = ex 𝑑

𝑑𝑥
(sinx – cosx) + (sinx – cosx) 

𝑑

𝑑𝑥
( ex) 

= ex  (cosx  + sinx) + (sinx – cosx) ex 

= 2exsinx  

f ‘(x) = 0 

⇒ 2exsinc = 0             

⇒ sinc = 0                                   [ ex ≠ 0 for any value of x] 

⇒  sinc = sin π    since sin π =0 

⇒ c = π 

  ⇒ x = π ϵ  ( 
𝜋

4
,

5𝜋

4
 ) 

Hence Rolle’s theorem is satisfied. 

 

Lagranges Mean Value Theorem  

If f(x) is a function and is  

i. continuous in the closed interval [a,b] 

ii. derivable in the open interval (a,b) 

Then there exists atleast one value c of x and c 𝛜 (a,b) such that f’(c) = 
f(b) –f(a)

𝑏−𝑎
 

Example  

Verify Lagranges mean value theorem for the function  

f(x) = x(x-2) in [1,2] 

The given function is a polynomial therefore it is continuous in [1,2] and derivable in (1,2) 

f’(x) = 2x -2 

f’( c) = 2c -2  

f(b) –f(a)

𝑏−𝑎
 = 

𝑓(2)−𝑓(1)

2−1
 

=  
0 – (−1)

1
 

Since f’(c) = 
f(b) –f(a)

𝑏−𝑎
 



⇒2c -2 = 1 

⇒2c = 3 

⇒c = 3/2 

      3/2 𝛜 (1,2) 

Therefore Lagranges mean value theorem is satisfied. 

Exercise  

 Verify Rolles theorem 

1. f(x)=4sinx , x ϵ [0,π] 

2. f(x)= 𝑒𝑥cosx, x ϵ [
−𝜋

2
,

𝜋

2
] 

3. f(x)= √4 − 𝑥2 on[-2,2] 

4. Apply Rolle’s theorem to find point(or points)on the given curve y = 16 - 𝑥2,                     

xϵ[-1,1] where the tangent is parallel to the x axis. 

5.  Use Lagranges Mean Value Theorem to determine a point P on the curve y =√𝑥 − 2 

Defined in the interval [2,3] where the tangent is parallel to the chord joining the end 

points on the curve. 

6. Verify Lagrange’s Mean Value  Theorem for the function  

i. f(x) =2x2-10x +29 in [2,7] 

ii. f(x) = logx in [1,e] 

 

 

 

 

 

 

 

 

 

 


