GIRLS' HIGH SCHOOL & COLLEGE, PRAYAGRAJ

WORKSHEET: 07

SESSION: 2020-21

CLASS: IX A, B, C, D,E & F

SUBJECT: MATHEMATICS

INSTRUCTIONS: Parents are expected to ensure that the student spends two days to read and understand the chapter according to the books and websites referred and thereafter answer the given questions.

NOTE: 1. Students should refer to books related to class 6,7 &8 for reference and also the following websites <u>www.extramarks.com</u> and <u>www.topperlearning.com</u>

2. Concise Mathematics I.C.S.E. CLASS- IX by R.K. BANSAL

3. Understanding I.C.S.E. Mathematics CLASS- IX by M.L. AGGARWAL

TOPIC : LOGARITHMS

Logarithms are used to make the long and complicated calculations easy.

Consider $3^4 = 81$, this is the exponential form of representing relation between three numbers 3,4,81 .Now the same relation between 3,4 and 81 can be written as

log₃81=4 (read as: logarithm of 81 at base 3 is 4)

Thus, $3^4 = 81 \Leftrightarrow \log_3 81 = 4$

Definition: If a, b and c are three real numbers such that $a \neq 1$ and $a^b = c$ then b is called logarithm of c at the base a and is written as $\log_a c = b$; read as log of c at the base a is b.

 $a^{b} = c \Leftrightarrow \log_{a}c = b$

INTERCHANGING

(logarithmic form vis-à-vis exponential form)

a^b =c is called the exponential form and, log_ac =b is called the logarithmic form i.e., i) 2⁻³ = 0.125 [exponential form] \Rightarrow log of 0.125 to the base 2 = -3 i.e., log₂0.125 = -3 [logarithmic form] ii) log₆₄8 = $\frac{1}{2}$ [logarithmic form] \Rightarrow log of 8 to the base 64 = $\frac{1}{2}$ i.e., (64)^{1/2} =8 [exponential form] and so on. similarly: If x is positive; iii) x⁰= 1 \Rightarrow log_x1 =0 i.e. log of 1 to the base x =0

In general; the logarithm of 1 to any base is zero.

i.e. $\log_5 1=0$; $\log_{10} 1=0$; $\log_a 1=0$ and so on.

iv) $x^1 = x \Rightarrow \log_x x = 1$ i.e. $\log x$ to the base x = 1

In general, the logarithm of any number to the same base is always 1.

i.e. $\log_5 5 = 1; \log_{10} 10 = 1; \log_a a = 1$ and so on

SOLVE THE FOLLOWING QUESTIONS ACCORDING TO THE EXAMPLES GIVEN

Example 1:

Find i) the logarithm of 1000 to the base 10

ii) the logarithm of 1/9 to the base 3

```
Solution :i) Let log_{10}1000 = x
```

```
10^{x} = 100010^{x} = 10^{3}\Rightarrow x = 3
```

ii) Let $\log_3 1/9 = x$

$$3^{x} = 1/9$$
$$3^{x} = 3^{-2}$$
$$\Rightarrow x = -2$$

Example 2:

Find x, i) log₂x = -2 ii) log₄(x+3) =2

Solution:i) $log_2x = -2$

$$2^{-2} = x$$

 $x=1/4$
ii)) $\log_4(x+3) = 2$
 $4^2 = x+3$
 $16 = x+3$
 $x=13$
iii) $\log_x 64 = 3/2$
 $x^{3/2} = 64$
 $x^{3/2} = 2^6$
 $x = 2^{6x2/3}$
 $x = 2^4$
 $x = 16$

Question 1: Express each of the following in logarithmic form:

i) $5^3 = 125$ ii) $3^{-2} = 1/9$ iii) $10^{-3} = 0.001$ iv) $(81)^{3/4} = 27$

Question 2: Express each of the following in exponential form:

i)log₈0.125 = -1

ii) log 100.01 =-2

Question 3: Find log of :

i) 100 to the base 10

ii) 0.1 to the base 10

iii)32 to the base 4

iv)1/16 to the base 4

v)1/81 to the base 27

Question 4: Find x, if :

- i) $\log_3 x=0$
- ii) log₉243=x
- iii) log₅(x-7) =1
- iv) $\log_7(2x^2 1) = 2$

Question 5: Evaluate:

i) $\log_2(1 \div 8)$ ii) $\log_5 1$ iii) $\log_{16} 8$

Example 3:

If $log_a m = n$, express a^{n-1} in terms of a and m

Solution: log_am=n

Question 6:Given log₂x=m and log₅y=n

i)Express 2^{m-3} in terms of x

ii)Express 5³ⁿ⁺² in terms of y

Question 7: If log ($x^2 - 21$) = 2, show that $x = \pm 11$

LAWS OF LOGARITHM

1) PRODUCT LAW : The logarithm of a product at any non zero base is equal to the sum of the logarithms of its factors at the same base

```
i.e. \log_{a}(mxn) = \log_{a}m + \log_{a}n
```

 $\log_x(m \times n \times p) = \log_x m + \log_x n + \log_x p$ and so on

Remember : $log_a(m+n) \neq log_am + log_an$

2) QUOTIENT LAW: The logarithm of a fraction at any non zero base is equal to the difference between the logarithm of the numerator minus the logarithm of the denominator, both at the same base

i.e. $\log_a m/n = \log_a m - \log_a n$

Remember: $\log_a m / \log_a n \neq \log_a m - \log_a n$. Also, $\log_a (m-n) \neq \log_a m - \log_a n$

3) POWER LAW:

The logarithm of a power of a number at any non zero base is equal to

the logarithm of the number (at the same base) multiplied by the power

i.e. $\log_a(m)^n = n\log_a m$

Corollary: since $\sqrt[n]{m} = m^{1/n}$

Therefore, $\log_a \sqrt[n]{m} = \log_a m^{1/n} = 1/n \log_a m$

NOTE:

1) logarithms to the base 10 are known as common logarithms.

2) If no base is given, the base is always taken as 10

i.e. $\log 8 = \log_{10} 8$; $\log a = \log_{10} a$; $\log 10 = \log_{10} 10$ and so on

3) log₁₀1 =0 ; log₁₀10=1;

 $\log_{10}100=2$ [$\log_{10}100=\log_{10}10^2=2\log_{10}10=2x1=2$]

Similarly,log₁₀1000 = 3; log₁₀10000=4 and so on

EXPANSION OF EXPRESSIONS WITH THE HELP OF LAWS OF LOGARITHM

Let
$$y = \frac{a^4 \times b^2}{c^3} \Rightarrow \log y = \log \frac{a^4 \times b^2}{c^3}$$

i.e. $\log y = \log (a^4 \times b^2) - \log c^3 \qquad [\log \frac{m}{n} = \log m - \log n]$
 $= \log a^4 + \log b^2 - \log c^3$
 $= 4\log a + 2\log b - 3\log c$
 $\log y = 4\log a + 2\log b - 3\log c$ is the logarithmic expansion

log y= 4loga + 2log b – 3logc is the logarithmic expansion of the given expression y= $\frac{a^4 \times b^2}{c^3}$

similarly,

$$m = \frac{3^{x}}{5^{y} \times 8^{z}} \Rightarrow \log m = \log 3^{x} - \log (5^{y} \times 8^{z})$$

Conversely:

 $\log V = \log \pi + 2\log r + \log h - \log 3$ $= \log \pi + \log r^{2} + \log h - \log 3$ $= \log \frac{\pi r^{2} h}{3}$ $V = \frac{\pi r^{2} h}{3}$

Example 4:

Express $\log_{10} \sqrt[5]{108}$ in terms of $\log_{10} 2$ and $\log_{10} 3$

Solution:
$$\log_{10} \sqrt[5]{108} = \log_{10} (108)^{1/5}$$
 [$\sqrt[n]{m} = m^{/n}$]
 $= \frac{1}{5} \log_{10} 108$ [log₁₀n^m=mlog₁₀n]
 $= \frac{1}{5} \log_{10} (2^2 x 3^3)$ [108=2x2x3x3x3=2²x3³]
 $= \frac{1}{5} [\log_{10} 2^2 + \log_{10} 3^3]$ [log₁₀mxn=log₁₀m+log₁₀n]
 $= \frac{1}{5} [2\log_{10} 2 + 3\log_{10} 3]$

Example 5:

Express as a single logarithm: $2 + \frac{1}{2} \log_{10}9 - 2\log_{10}5$ Solution: $2 + \frac{1}{2} \log_{10}9 - 2\log_{10}5$ $= \log_{10}100 + \log_{10}9^{1/2} - \log_{10}5^2$ [log₁₀100=2;log9=log3²;

Page **8** of **10**

$$=\log_{10}100 + \log_{10}3 - \log_{10}25$$

$$=\log_{10}\frac{100 \times 3}{25}$$

$$=\log_{10}12 \qquad [\log a + \log b - \log c = \log \frac{a \times b}{c}]$$

Example 6:
Find x, if (i) log 10(x+5) = 1
ii) log10(x+1) + log10(x-1) = log1011 + 2log103
Solution:i) log 10(x+5) = 1
log10(x+5) = log1010

$$\Rightarrow x+5 = 10$$

$$x=5$$

ii) log10(x+1) + log10(x-1) = log1011 + 2log103
log10(x+1) + log10(x-1) = log1011 + 2log103
log10(x+1)(x-1) = log1011 + log103^2
log(x^2-1) = log(11 \times 9)

$$\Rightarrow (x^2-1) = 99$$

$$x^2 = 100$$

$$x=10$$

Question 8 :Express each of the following in a form free from logarithm:

i) $2\log x - \log y = 1$

ii) $2\log x + 3\log y = \log a$

iii)a logx –b log y =2log3

Question 9: Evaluate each of the following without using tables:

i)log 5+log 8 – 2log2

ii)log₁₀8 + log₁₀25 +2log₁₀3 - log₁₀18

iii)log 4 + $\frac{1}{3}$ log 125 - $\frac{1}{5}$ log 32

Question10 :Prove that:

 $2\log_{18}^{15} - \log_{162}^{25} + \log_{9}^{4} = \log 2.$

THE END