GIRLS' HIGH SCHOOL AND COLLEGE, PRAYAGRAJ Session 2020-21
 CLASS-X (A,B,C,D,E,F)
 SUBJECT-MATHEMATICS WORKSHEET NO.-7

INSTRUCTIONS: - Parents are expected to ensure that the student spends two days to read and understand the chapter according to the books and websites given below.

NOTE - 1. Concise Mathematics ICSE Class X by R.K. Bansal
2. Understanding ICSE Mathematics Class X by M.L. Aggarwal
3. www.extramarks.com , www.topperlearning.com

Topic - Arithmetic Progresssion

INTRODUCTION - A group of numbers, which are arranged in a definite order following a certain rule, is called sequence.

Arithmetic Progression (A.P.): An arithmetic progression is a sequence (series) of numbers in which each term can be obtained by adding a certain quantity to its preceding term.

For example, the sequence $3,8,13,18,23-------$ is an arithmetic progression in which every term (other than the first term) can be obtained by adding 5 to its preceding term i.e.
$3+5=8,8+5=13,13+5=18$ and so on.
In an A.P. the difference between two consecutive terms is called its common difference and is denoted by letter 'd'.

Thus, if $t_{1}, t_{2}, t_{3}, t_{4},-\cdots----$ are consecutive terms (numbers) in A.P. ,its first term is t_{1} and is denoted by \mathbf{a}.

So, $a=t_{1}$
$d=t_{2}-t_{1}=t_{3}-t_{2}=t_{4}-t_{3}=-\cdots-\cdots$ and so on.
e.g. $4,6,8,10$,-------
with first term $a=4$ and common difference $d=6-4=2$.

General Term of An Arithmetic Progression :

Let the first term of an A.P. be 'a' and its common difference be ' d ', the terms of the A.P. can be taken as:
$a, a+d, a+2 d, a+3 d,-------$
First term $=a=a+(1-1) d=a+(n o$. of term -1$) d$
Second term $=a+d=a+(2-1) d=a+($ no. of term -1$) d$
Third term $=a+2 d=a+(3-1) d=a+(n o$. of term -1$) d$
On proceeding in the similar manner, we find:

$$
\mathrm{n}^{\text {th }} \text { term of an A.P. }=\mathrm{a}+(\mathrm{n}-1) \text { d i.e. } \mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}
$$

Here, $t_{n}=a+(n-1) d$ is called the general term of the A.P. in which by putting $\mathrm{n}=1,2,3$, etc.,we can get first term ,second term ,third term , respectively of the A.P. under consideration.

NOTE: If an A.P. has only n terms, its $n^{\text {th }}$ term (last term) is denoted by letter \mathbf{L}. Thus for an A.P. with first term $=\mathrm{a}$, common difference $=\mathrm{d}$ and number of terms= n , we have $\mathrm{L}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$.

For an A.P., $\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$=>$ if $\mathrm{d}>0$, the A.P. is increasing
if $\mathrm{d}<0$, the A.P. is decreasing and
if $d=0$, all the terms of the A.P. are same.
In general, if a sequence has n terms, then $r^{\text {th }}$ term from its end $=(\mathrm{n}-\mathrm{r}+1)^{\mathrm{th}}$ term from the beginning

Sum of \mathbf{n} terms of an A.P. :

Let for the given A.P., first term =a, common difference $=$ d, number of terms $=\mathrm{n}$ and last term $=\mathrm{L}$.

For an A.P. when
(i) a, n and L are known, take its $\operatorname{sum} \mathrm{S}=\frac{\boldsymbol{n}}{\mathbf{2}}(\mathbf{a}+\mathrm{L})$
(ii) a, n and d are known , take $\mathbf{S}=\frac{\mathbf{n}}{\mathbf{2}}[\mathbf{2 a + (n - 1) d]}$

NOTE: $\mathrm{n}^{\text {th }}$ term of an A.P. $=$ Sum of n terms - Sum of ($\left.\mathrm{n}-1\right)$ terms
e.g. $10^{\text {th }}$ term of A.P. $=$ Sum of 10 terms - Sum of 9 terms
i.e. $\quad \mathrm{t}_{10}=\mathrm{S}_{10}-\mathrm{S}_{9}$

Three or more terms in A.P. :

1. When the sum of three consecutive terms of an A.P. is given, we take the terms as: (a-d), a and (a+d).
2. When the sum of four consecutive terms of an A.P. is given, we take the terms as: $(a-3 d),(a-d),(a+d),(a+3 d)$.
3. For consecutive five terms in A.P. : take terms as (a-2d), (a-d), a, $(a+d)$ and $(a+2 d)$.
4. For consecutive six terms of A.P. :take terms as (a-5d), (a-3d), (a$d),(a+d),(a+3 d)$ and (a+5d).

Arithmetic Mean :

If three numbers a, A and b are in arithmetic progression, then A is called arithmetic mean (A.M.) between a and b.

Since; a, A and b are in A.P.

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{A}-\mathrm{a}=\mathrm{b}-\mathrm{A} \\
& \Rightarrow \quad 2 \mathrm{~A}=\mathrm{a}+\mathrm{b} \text { and } \mathrm{A}=\frac{a+b}{2}
\end{aligned}
$$

\therefore Arithmetic mean between a and $\mathrm{b}=\frac{a+b}{2}$.

Properties of an A.P. :

Property 1: If same fixed non-zero number is added or subtracted from each term of an A.P., the resulting sequence is also an A.P.
e.g. (i) 5, 8, 11, 14 ------are in A.P.
$\Rightarrow 5+7,8+7,11+7,14+7,--$ are in A.P. [Adding 7 to each term] and,5-7, 8-7, 11-7, 14-7,-----are also in A.P. [Subtracting 7 from each term]

Property 2: If each term of a given A.P. is multiplied or divided by a given non-zero fixed number, the resulting sequence is in A.P.
e.g. (i) $5,8,11,14,-----$-are in A.P.
$\Rightarrow 5 * 8,8 * 8,11 * 8,14 * 8,----$ are also in A.P. [Multiplying each term by 8]
(ii) $27,25,23,21,--\cdots---$ are also in A.P.

$$
=>\frac{27}{4}, \frac{25}{4}, \frac{23}{4}, \frac{21}{4}-\cdots-- \text { are also in A.P. [Dividing each term by 4] }
$$

Example1: For an A.P. 7, $15,23,31,---------$,write the first term, common difference and next two terms .

Solution :
First term of the given A.P. $=7$. Its common difference $=15-7=8$
Next two terms are $31+\mathrm{d}=31+8=39$ and $39+8=47$
Example2: Find the A.P. whose second term is 12 and $7^{\text {th }}$ term exceeds the $4^{\text {th }}$ by 15 .

Solution:

$$
\begin{aligned}
& \text { Second term }=12 \Rightarrow a+d=12 \\
& 7^{\text {th }} \text { term }-4^{\text {th }} \text { term }=15 \quad \Rightarrow \quad(a+6 d)-(a+3 d)=15 \\
& \text { i.e. } 3 d=15 \Rightarrow d=5 \text { and } a+d=12 \Rightarrow a=7
\end{aligned}
$$

\therefore The required A.P. $=\mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}, \mathrm{a}+3 \mathrm{~d}$,

$$
\begin{aligned}
& =7,7+5,7+2 * 5,7+3 * 5,-----------------------------------1
\end{aligned}
$$

Example3:Find the $12^{\text {th }}$ term from the end in A.P. 13, 18, 23, ----, 158.
Solution:
Let the given A.P. 13, 18, 23, -------, 158 has n terms

$$
\begin{aligned}
\therefore 158 & =13+(\mathrm{n}-1) * 5 \\
& =>\mathrm{n}=30
\end{aligned}
$$

$12^{\text {th }}$ term from the end
$=(30-12+1)^{\text {th }}$ term from the beginning
$=19^{\text {th }}$ term from the beginning
$=a+18 \mathrm{~d}=13+18 * 5=103$
Example4:How many whole numbers, each divisible by 7, lie between 200 and 500?

Solution:

$$
\because \frac{200}{7}=28 \frac{4}{7} \text { and } \frac{500}{7}=71 \frac{3}{7}
$$

The numbers between 200 and 500 and divisible by 7 are:
$29 * 7,30 * 7,31 * 7,------, 71 * 7$
$=203,210,217,-\cdots----, 497$
It is an A.P. with first term $\mathrm{a}=203$, common difference $\mathrm{d}=7$ and last term $\mathrm{L}=497$
$\mathrm{L}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \quad \Rightarrow \quad 497=203+(\mathrm{n}-1) * 7$
i.e. $294=(\mathrm{n}-1) * 7 \quad \Rightarrow \quad \mathrm{n}-1=\frac{294}{7}=42$ and $\mathrm{n}=43$
\therefore There are 43 numbers between 200 and 500 which are divisible by 7.

Example5:For the A.P. : 10, 15, 20,------,195; find:
(i)the number of terms in the above A.P.
(ii)the sum of all its terms.

Solution:

Given: $\mathrm{a}=10, \mathrm{~d}=5$ and last term $\mathrm{L}=195$
(i)If the given A.P. has n terms:

$$
\begin{aligned}
\mathrm{L}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} & \Rightarrow \quad 195=10+(\mathrm{n}-1) * 5 \\
& =>\quad 185=(\mathrm{n}-1) * 5 \\
& =>\quad 37=(\mathrm{n}-1) \text { i.e. } \mathrm{n}=38
\end{aligned}
$$

(ii) $\because \mathrm{a}=10, \mathrm{~L}=195$ and $\mathrm{n}=38$

$$
\begin{aligned}
\therefore \quad \mathrm{S} & =\frac{n}{2}[\mathrm{a}+\mathrm{L}] \\
& =\frac{38}{2}[10+195]=19 * 205=3895
\end{aligned}
$$

Example6: How many terms of the A.P. 43, 39, 35, --------be taken so that their sum is 252 ?

Solution: Let the number of terms taken be n.

$$
\begin{aligned}
& \because \mathrm{a}=43 \text { and } \mathrm{d}=39-43=-4 \\
& \begin{aligned}
\therefore \mathbf{S}=\frac{n}{2}[\mathbf{2 a +}(\mathbf{n}-\mathbf{1}) \mathrm{d}] \Rightarrow & 252=\frac{n}{2}[2 * 43+(\mathrm{n}-1) *-4] \\
\Rightarrow & 252 * 2=\mathrm{n}(86-4 \mathrm{n}+4) \\
& \Rightarrow 504=90 \mathrm{n}-4 \mathrm{n}^{2} \\
\Rightarrow & 2 \mathrm{n}^{2}-45 \mathrm{n}+252=0 \\
\Rightarrow & (\mathrm{n}-12)(2 \mathrm{n}-21)=0 \\
\Rightarrow & \mathrm{n}=12 \text { or } \mathrm{n}=\frac{21}{2} \\
\Rightarrow & \mathrm{n}=12 \quad\left[\because \mathrm{n} \neq \frac{21}{2}\right]
\end{aligned}
\end{aligned}
$$

\therefore The required number of terms $=\mathbf{1 2}$

Example7:Insert two arithmetic means between 5 and 11.
Solution:
Let the required means (A.M.s) between 5 and 11 be A_{1} and A_{2}

$$
\begin{aligned}
\Rightarrow \quad & 5, A_{1}, A_{2} \text { and } 11 \text { are in A.P. } \\
\Rightarrow \quad & 11=4^{\text {th }} \text { term of this A.P. } \\
\Rightarrow \quad & 11=5+3 \text { d i.e. } \mathrm{d}=2 \\
& \therefore \quad \mathrm{~A}_{1}=5+\mathrm{d}=5+2=7 \text { and } \mathrm{A}_{2}=7+2=9 \\
& \Rightarrow \quad \text { Required A.M.s between } 5 \text { and } 11=7 \text { and } 9 .
\end{aligned}
$$

Example8: In a school, students stand in rows. If 30 students stand in the first row, twenty-seven in the second row, twenty four in the third row and six in the last row; find how many rows are there and what is the total number of students?

Solution:
Sequence formed by the number of students standing in different rows $=30,27,24,-------------, 6$

It is an A.P. with $\mathrm{a}=30, \mathrm{~d}=-3$ and $\mathrm{L}=6$
Since, $\quad a+(n-1) d=L$

$$
\Rightarrow \quad 30+(n-1)^{*}-3=6 \text { i.e. } n=9
$$

\therefore There are 9 rows

Also, total number of students

=Sum of students in different rows

$$
\begin{aligned}
& =\frac{9}{2}[2 * 30+(9-1) *-3] \\
& =\frac{9}{2}[60-24]=\frac{9}{2} * 36=162
\end{aligned}
$$

SOLVE THE FOLLOWING QUESTIONS:

Ques1- Find the $24^{\text {th }}$ term of the sequence :
$12,10,8,6,----------------$.
Ques2- If $5^{\text {th }}$ and $6^{\text {th }}$ terms of an A.P. are respectively 6 and 5.Find the $11^{\text {th }}$ term of the A.P.

Ques3-If t_{n} represents $\mathrm{n}^{\text {th }}$ term of an A.P., $\mathrm{t}_{2}+\mathrm{t}_{5}-\mathrm{t}_{3}=10$ and $\mathrm{t}_{2}+\mathrm{t}_{9}=17$, find its first term and its common difference.

Ques4- How many two-digit numbers are divisible by 3 ?
Ques5- Determine the A.P. whose $3^{\text {rd }}$ term is 16 and $7^{\text {th }}$ term exceeds the $5^{\text {th }}$ term by 12 .

Ques6- Determine the value of k for which $k^{2}+4 k+8,2 k^{2}+3 k+6$ and $3 \mathrm{k}^{2}+4 \mathrm{k}+4$ are in A.P.

Ques7-In an A.P., if $\mathrm{m}^{\text {th }}$ term is n and $\mathrm{n}^{\text {th }}$ term is m , show that its $\mathrm{r}^{\text {th }}$ term is $(m+n-r)$.

Ques8-Find the sum of all natural numbers between 250 and 1000 which are divisible by 9 .

Ques9- The first and the last terms of an A.P. are 34 and 700 respectively. If the common difference is 18 , how many terms are there and what is their sum?

Ques10- Find four numbers in A.P. whose sum is 20 and the sum of whose squares is 120 .

Ques11-Insert three arithmetic means between 15 and 27.
Ques12- If the sum of first m terms of an A.P. be n and the sum of first n terms of the same A.P. be m, show that the sum of its $(m+n)$ is $-(m+n)$.

Ques13-Two cars start together in the same direction from the same place. The first car goes at uniform speed of $10 \mathrm{kmh}^{-1}$. The second car goes at a speed of $8 \mathrm{kmh}^{-1}$ in the first hour and thereafter increasing the speed by $0.5 \mathrm{kmh}^{-1}$ each succeeding hour. After how many hours will the two cars meet?

Ques14- A manufacturer of TV sets produces 600 units in the third year and 700 units in the $7^{\text {th }}$ year. Assuming that the production increases uniformly by a fixed number every year, find:
(i) the production in the first year.
(ii)the production in the $10^{\text {th }}$ year.
(iii)the total production in 7 years.

Ques15- If the $8^{\text {th }}$ term of an A.P. is 37 and the $15^{\text {th }}$ term is 15 more than the $12^{\text {th }}$ term, find the A.P.

THE END

