GIRLS' HIGH SCHOOL AND COLLEGE, PRAYAGRAJ

Session 2020-21

CLASS-X (A,B,C,D,E,F) SUBJECT-MATHEMATICS WORKSHEET NO.-5

INSTRUCTIONS: – Parents are expected to ensure that the student spends two days to read and understand the chapter according to the books and websites given below.

- **NOTE** 1. Concise Mathematics ICSE Class X by R.K. Bansal
 - 2. Understanding ICSE Mathematics Class X by M.L. Aggarwal
 - 3. www.extramarks.com , www.topperlearning.com

Topic - Remainder and factor theorem

Polynomials in one variable

An expression of the form $a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n$, where $a_{0,}a_1, a_2, \dots, a_{n-1}, a_n$ are real numbers, $a_n \neq 0$ and n is a non negative integer, is called a polynomial in x of degree n.

CONSTANTS – A symbol having a fixed numerical value is called a constant.

Examples – 9, -6, $\frac{4}{7}$, $\sqrt{2}$, π are all constants.

VARIABLES – A symbol which may be assigned different numerical values is known as a variable.

Example – We know that the circumference of a circle is given by the formula $C = 2\pi r$, where r is the radius of the circle.

Here, 2 and π are constants, while C and r are variables.

REMAINDER THEOREM:

If f(x), a polynomial in x, is divided by (x - a), the remainder = f(a). e.g. If f(x) is divided by (x - 3), the remainder is f(3). For Finding the Remainder, using Remainder Theorem:

- **Step 1:** Put the divisor equal to zero and solve the equation obtained to get the value of its variable.
- **Step 2:** Substitute the value of the variable, obtained in step 1, in the given polynomial and simplify it to get the required remainder.

FACTOR THEOREM:

When a polynomial f(x) is divided by x - a, the remainder = f(a). And if remainder = f(a) = 0; = x - a is a factor of the polynomial = f(x).

USING THE FACTOR THEOREM TO FACTORISE THE GIVEN POLYNOMIAL:

Factorising a polynomial completely after obtaining one factor by factor theorem.

When expression f(x) is divided by x - a, the remainder = f(a).

If the remainder f(a) = 0

 $\Rightarrow x - a$ is a factor of expression f(x).

Conversely, if for the expression f(x), f(a) = 0; $\Rightarrow (x - a)$ is a factor.

For example:

Let
$$f(x) = x^2 - 7x + 10$$
; then

$$f(2) = (2)^2 - 7 * 2 + 10 = 0$$

$$\Rightarrow x - 2$$
 is a factor of $f(x) = x^2 - 7x + 10$

Example1: Find the value of 'a' if the division of $ax^3 + 9x^2 + 4x - 10$ by x + 3 leaves a remainder of 5.

Solution:

$$x + 3 = 0 \implies x = -3$$

Given, remainder is 5; therefore:

The value of
$$ax^3 + 9x^2 + 4x - 10$$
 at $x = -3$ is 5
$$\Rightarrow a(-3)^3 + 9(-3)^2 + 4(-3) - 10 = 5$$

$$\Rightarrow -27a + 81 - 12 - 10 = 5$$

$$\Rightarrow -27a + 81 - 22 = 5$$

$$\Rightarrow -27a = 5 + 22 - 81$$

$$\Rightarrow -27a = 27 - 81$$

$$\Rightarrow -27a = -54$$

$$\Rightarrow a = 2$$

Example2: If x - 2 is a factor $x^2 - 7x + 2a$, find the value a.

Solution:

$$x - 2 = 0 \implies x = 2$$

Since, x - 2 is a factor of polynomial $x^2 - 7x + 2a$

$$\Rightarrow \text{Remainder} = 0 \Rightarrow (2)^2 - 7(2) + 2a = 0$$

$$\Rightarrow 4 - 14 + 2a = 0$$

$$\Rightarrow -10 = -2a$$

$$\Rightarrow a = 5$$

Example3: Show that 2x + 7 is a factor of $2x^3 + 5x^2 - 11x - 14$. Hence, factorise the given expression completely, using the factor theorem.

Solution:

$$2x + 7 = 0 \implies x = -\frac{7}{2}$$
Remainder = Value of $2x^3 + 5x^2 - 11x - 14$ at $x = -\frac{7}{2}$

$$= 2\left(-\frac{7}{2}\right)^3 + 5\left(-\frac{7}{2}\right)^2 - 11\left(-\frac{7}{2}\right) - 14$$

$$= -\frac{343}{4} + \frac{245}{4} + \frac{77}{2} - 14$$

$$= \frac{-343+245+154-56}{4} = 0$$

$$\Rightarrow (2x+7) \text{ is a factor of } 2x^3 + 5x^2 - 11x - 14$$

$$\therefore 2x^3 + 5x^2 - 11x - 14 = (2x+7)(x^2 - x - 2)$$

$$= (2x+7)(x^2 - 2x + x - 2)$$

$$= (2x+7)[x(x-2)+1(x-2)]$$

$$= (2x+7)(x-2)(x+1)$$

Example4: Find the values of a' and b' so that the polynomial

$$x^3 + ax^2 + bx - 45$$
 has $(x - 1)$ and $(x + 5)$ as its factors.

For the values of a' and b', as obtained above, factorise the given polynomial completely.

Solution:

$$(x-1)$$
 is a factor of given polynomial $x^3 + ax^2 + bx - 45$

$$\Rightarrow (1)^3 + a(1)^2 + b(1) - 45 = 0 [x - 1 = 0 \Rightarrow x = 1]$$

i.e.
$$a + b = 44$$
I

(x + 5) is a factor of given polynomial

$$\Rightarrow (-5)^3 + a(-5)^2 + b(-5) - 45 = 0 [x+5=0 \Rightarrow x=-5]$$

$$\Rightarrow \qquad -125 + 25a - 5b - 45 = 0$$

i.e.
$$5a - b = 34$$
II

On solving equations I and II. We get:

$$a = 13$$
 and $b = 31$

$$\therefore$$
 The given polynomial $x^3 + ax^2 + bx - 45$

$$= x^3 + 13x^2 + 31x - 45$$

Now divide this polynomial

by
$$(x - 1)$$
 as shown alongside:

$$\therefore x^3 + 13x^2 + 31x - 45$$

$$= (x - 1)(x^2 + 14x + 45)$$

$$= (x - 1)(x^2 + 9x + 5x + 45)$$

$$= (x - 1)[x(x + 9) + 5(x + 9)]$$

$$= (x - 1)(x + 9)(x + 5)$$

$$x^{2} + 14x + 45$$

$$x - 1 \overline{\smash) x^{3} + 13x^{2} + 31x - 45}$$

$$x^{3} - x^{2}$$

$$- +$$

$$14x^{2} + 31x - 45$$

$$14x^{2} - 14x$$

$$- +$$

$$45x - 45$$

$$45x - 45$$

$$- +$$

$$\times$$

SOLVE THE FOLLOWING QUESTIONS:

Question 1 - If 2x + 1 is a factor of $2x^2 + ax - 3$, find the value of a.

Question 2 – Find the values of constants a and b when x-2 and x+3 both are the factors of expression $x^3 + ax^2 + bx - 12$.

Question 3 – Find the value of k, if 2x + 1 is a factor of $(3k + 2) x^3 + (k - 1)$.

Question 4 – Find the value of α , if x - 2 is a factor of

$$2x^5 - 6x^4 - 2ax^3 + 6ax^2 + 4ax + 8$$
.

Question 5 – Find the values of m and n so that x - 1 and x + 2 both are factors of

$$x^3 + (3m+1)x^2 + nx - 18$$
.

Question $6 - \text{If } x^3 + ax^2 + bx + 6 \text{ has } x - 2 \text{ as a factor and leaves a remainder}$ 3 when divided by x - 3, find the values of a and b.

- Question 7 What number should be subtracted from $x^3 + 3x^2 8x + 14$ so that on dividing it by x 2, the remainder is 10?
- Question 8 The polynomials $2x^3 7x^2 + ax 6$ and

 $x^3 - 8x^2 + (2a + 1)x - 16$ leave the same remainder when divided by x - 2. Find the value of 'a'.

- Question 9 If (x 2) is a factor of the expression $2x^3 + ax^2 + bx 14$ and when the expression is divided by (x 3), it leaves a remainder 52, find the values of a and b.
- Question 10 Find 'a' if the two polynomials $ax^3 + 3x^2 9$ and $2x^3 + 4x + a$, leave the same remainder when divided by x + 3.
- Question 11 Using the Factor Theorem, show that:

(x+5) is a factor of $2x^3 + 5x^2 - 28x - 15$. Hence, factorise the expression $2x^3 + 5x^2 - 28x - 15$ completely.

Question 12– Using the Remainder Theorem, factorise the expression:

$$2x^3 + x^2 - 13x + 6$$

Question 13–Using the Remainder Theorem, factorise the expression $3x^3 + 10x^2 + x - 6$. Hence, solve the equation $3x^3 + 10x^2 + x - 6 = 0$.

- Question 14 Given that x 2 and x + 1 are factors of $f(x) = x^3 + 3x^2 + ax + b$; calculate the values of a and b. Hence, find all the factors of f(x).
- Question 15 If x + a is a common factor of expressions $f(x) = x^2 + px + q$ and $g(x) = x^2 + mx + n$; show that : $a = \frac{n-q}{m-p}$
- Question 16 The polynomials $ax^3 + 3x^2 3$ and $2x^3 5x + a$, when divided by x 4, leave the same remainder in each case. Find the value of a.
- Question 17 Find the value of 'a', if (x a) is a factor of $x^3 ax^2 + x + 2$.
- Question 18 Find the number that must be subtracted from the polynomial $3y^3 + y^2 22y + 15$, so that the resulting polynomial is completely divisible by y + 3.
- Question 19 Factorise the expression

$$f(x) = 2x^3 - 7x^2 - 3x + 18.$$

Hence, find all possible values of x for which f(x) = 0

- Question 20 The expression $4x^3 bx^2 + x c$ leaves remainders 0 and 30 when divided by x + 1 and 2x 3 respectively. Calculate the values of b and c. Hence, factorise the expression completely.
- Question 21 Find, in each case, the remainder when:

(i)
$$x^4 - 3x^2 + 2x + 1$$
 is divided by $x - 1$.

(ii) $x^3 + 3x^2 - 12x + 4$ is divided by x - 2.

(iii) $x^4 + 1$ is divided by x + 1.

Question 22 – Show that:

- (i) x 2 is a factor of $5x^2 + 15x 50$.
- (ii) 3x + 2 is a factor of $3x^2 x 2$.
- Question 23 When $x^3 + 2x^2 kx + 4$ is divided by x 2, the remainder is k. Find the value of constant k.
- Question 24 Find the value of a, if the division of $ax^3 + 9x^2 + 4x 10$ by x + 3 leaves a remainder 5.
- Question 25 The expression $2x^3 + ax^2 + bx 2$ leaves remainder 7 and 0 when divided by 2x 3 and x + 2 respectively. Calculate the values of a and b.

-----THE END-----