GIRLS' HIGH SCHOOL AND COLLEGE, PRAYAGRAJ Session 2020-21
 CLASS-X (A,B,C,D,E,F)
 SUBJECT-MATHEMATICS
 WORKSHEET NO.-5

INSTRUCTIONS: - Parents are expected to ensure that the student spends two days to read and understand the chapter according to the books and websites given below.

NOTE - 1. Concise Mathematics ICSE Class X by R.K. Bansal
2. Understanding ICSE Mathematics Class X by M.L. Aggarwal
3. www.extramarks.com, www.topperlearning.com

Topic - Remainder and factor theorem

Polynomials in one variable

An expression of the form $a_{0}+a_{1} x+a_{2} x^{2}+\cdots \ldots \ldots \ldots+a_{n-1} x^{n-1}+a_{n} x^{n}$, where $a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots a_{n-1}, a_{n}$ are real numbers, $a_{n} \neq 0$ and n is a non negative integer, is called a polynomial in x of degree n.

CONSTANTS - A symbol having a fixed numerical value is called a constant.
Examples - $\quad 9,-6, \frac{4}{7}, \sqrt{2}, \pi$ are all constants.
VARIABLES - A symbol which may be assigned different numerical values is known as a variable.

Example - We know that the circumference of a circle is given by the formula $C=2 \pi r$, where r is the radius of the circle.

Here, 2 and π are constants, while C and r are variables.

REMAINDER THEOREM:

If $f(x)$, a polynomial in x, is divided by $(x-a)$, the remainder $=f(a)$.
e.g. If $f(x)$ is divided by $(x-3)$, the remainder is $f(3)$.

For Finding the Remainder, using Remainder Theorem:
Step 1: Put the divisor equal to zero and solve the equation obtained to get the value of its variable.

Step 2: Substitute the value of the variable, obtained in step 1, in the given polynomial and simplify it to get the required remainder.

FACTOR THEOREM:

When a polynomial $f(x)$ is divided by $x-a$, the remainder $=f(a)$. And if remainder $f(a)=0 ; \quad x-a$ is a factor of the polynomial $f(x)$.

USING THE FACTOR THEOREM TO FACTORISE THE GIVEN POLYNOMIAL:

Factorising a polynomial completely after obtaining one factor by factor theorem.
When expression $f(x)$ is divided by $x-a$, the remainder $=f(a)$.
If the remainder $f(a)=0$
$\Rightarrow x-a$ is a factor of expression $f(x)$.
Conversely, if for the expression $f(x), f(a)=0 ; \Rightarrow(x-a)$ is a factor.
For example:
Let $f(x)=x^{2}-7 x+10$; then
$f(2)=(2)^{2}-7 * 2+10=0$
$\Rightarrow x-2$ is a factor of $f(x)=x^{2}-7 x+10$
Example1: Find the value of ' a ' if the division of $a x^{3}+9 x^{2}+4 x-10$ by $x+3$ leaves a remainder of 5 .

Solution:

$$
x+3=0 \quad \Rightarrow \quad x=-3
$$

Given, remainder is 5; therefore:
The value of $a x^{3}+9 x^{2}+4 x-10$ at $x=-3$ is 5

$$
\begin{aligned}
& \Rightarrow a(-3)^{3}+9(-3)^{2}+4(-3)-10=5 \\
& \Rightarrow-27 a+81-12-10=5 \\
& \Rightarrow-27 a+81-22=5 \\
& \Rightarrow-27 a=5+22-81 \\
& \Rightarrow-27 a=27-81 \\
& \Rightarrow-27 a=-54 \\
& \Rightarrow a=2
\end{aligned}
$$

Example2: If $x-2$ is a factor $x^{2}-7 x+2 a$, find the value a.
Solution:

$$
x-2=0 \Rightarrow x=2
$$

Since, $x-2$ is a factor of polynomial $x^{2}-7 x+2 a$
\Rightarrow Remainder $=0 \Rightarrow(2)^{2}-7(2)+2 a=0$

$$
\begin{aligned}
& \Rightarrow \quad 4-14+2 a=0 \\
& \Rightarrow-10=-2 a \\
& \Rightarrow a=5
\end{aligned}
$$

Example3: Show that $2 x+7$ is a factor of $2 x^{3}+5 x^{2}-11 x-14$. Hence, factorise the given expression completely, using the factor theorem.

Solution:

$$
2 x+7=0 \quad \Rightarrow \quad x=-\frac{7}{2}
$$

Remainder $=$ Value of $2 x^{3}+5 x^{2}-11 x-14$ at $x=-\frac{7}{2}$

$$
\begin{aligned}
& =2\left(-\frac{7}{2}\right)^{3}+5\left(-\frac{7}{2}\right)^{2}-11\left(-\frac{7}{2}\right)-14 \\
& =-\frac{343}{4}+\frac{245}{4}+\frac{77}{2}-14
\end{aligned}
$$

$=\frac{-343+245+154-56}{4}=0$
$\Rightarrow(2 x+7)$ is a factor of $2 x^{3}+5 x^{2}-11 x-14$
$\therefore 2 x^{3}+5 x^{2}-11 x-14=(2 x+7)\left(x^{2}-x-2\right)$
$=(2 x+7)\left(x^{2}-2 x+x-2\right)$
$=(2 x+7)[x(x-2)+1(x-2)]$
$=(2 x+7)(x-2)(x+1)$
Example4: Find the values of ' a ' and ' b ' so that the polynomial

$$
x^{3}+a x^{2}+b x-45 \text { has }(x-1) \text { and }(x+5) \text { as its factors. }
$$

For the values of ' a ' and ' b ', as obtained above, factorise the given polynomial completely.

Solution:
$(x-1)$ is a factor of given polynomial $x^{3}+a x^{2}+b x-45$
\Rightarrow
$(1)^{3}+a(1)^{2}+b(1)-45=0$
$[x-1=0 \Rightarrow x=1]$
i.e.

$$
a+b=44
$$

$(x+5)$ is a factor of given polynomial

$$
\begin{array}{ll}
\Rightarrow & (-5)^{3}+a(-5)^{2}+b(-5)-45=0 \quad[x+5=0 \Rightarrow x=-5] \\
\Rightarrow & -125+25 a-5 b-45=0 \\
\text { i.e. } & 5 a-b=34
\end{array}
$$

On solving equations I and II. We get :

$$
a=13 \quad \text { and } \quad b=31
$$

\therefore The given polynomial $x^{3}+a x^{2}+b x-45$

$$
=x^{3}+13 x^{2}+31 x-45
$$

Now divide this polynomial
by $(x-1)$ as shown alongside:

$$
\begin{aligned}
& \therefore x^{3}+13 x^{2}+31 x-45 \\
& =(x-1)\left(x^{2}+14 x+45\right) \\
& =(x-1)\left(x^{2}+9 x+5 x+45\right) \\
& =(x-1)[x(x+9)+5(x+9)] \\
& =(x-1)(x+9)(x+5)
\end{aligned}
$$

SOLVE THE FOLLOWING QUESTIONS:

Question $1-$ If $2 x+1$ is a factor of $2 x^{2}+a x-3$, find the value of a.
Question 2 - Find the values of constants a and b when $x-2$ and $x+3$ both are the factors of expression $x^{3}+a x^{2}+b x-12$.

Question 3 - Find the value of k, if $2 x+1$ is a factor of $(3 k+2) x^{3}+(k-1)$.
Question 4 - Find the value of a, if $x-2$ is a factor of

$$
2 x^{5}-6 x^{4}-2 a x^{3}+6 a x^{2}+4 a x+8
$$

Question 5 - Find the values of m and n so that $x-1$ and $x+2$ both are factors of

$$
x^{3}+(3 m+1) x^{2}+n x-18
$$

Question 6 - If $x^{3}+a x^{2}+b x+6$ has $x-2$ as a factor and leaves a remainder 3 when divided by $x-3$, find the values of a and b.

Question 7 - What number should be subtracted from $x^{3}+3 x^{2}-8 x+14$ so that on dividing it by $x-2$, the remainder is 10 ?

Question 8 - The polynomials $2 x^{3}-7 x^{2}+a x-6$ and $x^{3}-8 x^{2}+(2 a+1) x-16$ leave the same remainder when divided by $x-2$. Find the value of ' a '.

Question 9 - If $(x-2)$ is a factor of the expression $2 x^{3}+a x^{2}+b x-14$ and when the expression is divided by $(x-3)$, it leaves a remainder 52 , find the values of a and b.

Question 10 - Find ' a^{\prime} ' if the two polynomials $a x^{3}+3 x^{2}-9$ and $2 x^{3}+4 x+a$, leave the same remainder when divided by $x+3$.

Question 11 - Using the Factor Theorem, show that:
$(x+5)$ is a factor of $2 x^{3}+5 x^{2}-28 x-15$. Hence, factorise the expression $2 x^{3}+5 x^{2}-28 x-15$ completely.

Question 12- Using the Remainder Theorem, factorise the expression:

$$
2 x^{3}+x^{2}-13 x+6
$$

Question 13-Using the Remainder Theorem, factorise the expression $3 x^{3}+$ $10 x^{2}+x-6$. Hence, solve the equation $3 x^{3}+10 x^{2}+x-6=$ 0 .

Question 14 - Given that $x-2$ and $x+1$ are factors of $f(x)=x^{3}+3 x^{2}+$ $a x+b$; calculate the values of a and b. Hence, find all the factors of $f(x)$.

Question 15 - If $x+a$ is a common factor of expressions $f(x)=x^{2}+p x+q$ and $g(x)=x^{2}+m x+n$; show that : $a=\frac{n-q}{m-p}$

Question 16 - The polynomials $a x^{3}+3 x^{2}-3$ and $2 x^{3}-5 x+a$, when divided by $x-4$, leave the same remainder in each case. Find the value of a.

Question 17 - Find the value of ' a ', if $(x-a)$ is a factor of $x^{3}-a x^{2}+x+2$.
Question 18 - Find the number that must be subtracted from the polynomial $3 y^{3}+y^{2}-22 y+15$, so that the resulting polynomial is completely divisible by $y+3$.

Question 19 - Factorise the expression

$$
f(x)=2 x^{3}-7 x^{2}-3 x+18
$$

Hence, find all possible values of x for which $f(x)=0$
Question 20 - The expression $4 x^{3}-b x^{2}+x-c$ leaves remainders 0 and 30 when divided by $x+1$ and $2 x-3$ respectively. Calculate the values of b and c. Hence, factorise the expression completely.

Question 21 - Find, in each case, the remainder when:
(i) $x^{4}-3 x^{2}+2 x+1$ is divided by $x-1$.
(ii) $x^{3}+3 x^{2}-12 x+4$ is divided by $x-2$.
(iii) $x^{4}+1$ is divided by $x+1$.

Question 22 - Show that:
(i) $x-2$ is a factor of $5 x^{2}+15 x-50$.
(ii) $3 x+2$ is a factor of $3 x^{2}-x-2$.

Question $23-$ When $x^{3}+2 x^{2}-k x+4$ is divided by $x-2$, the remainder is k. Find the value of constant k.

Question 24 - Find the value of a, if the division of $a x^{3}+9 x^{2}+4 x-10$ by $x+3$ leaves a remainder 5 .

Question 25 - The expression $2 x^{3}+a x^{2}+b x-2$ leaves remainder 7 and 0 when divided by $2 x-3$ and $x+2$ respectively. Calculate the values of a and b.

