GIRLS' HIGH SCHOOL AND COLLEGE, PRAYAGRAJ

WORKSHEET-4

CLASS IX (A,B,C,D, E &F)

SESSION 2020-2021

SUBJECT-MATHEMATICS

INSTRUCTIONS:- Parents are expected to ensure that the student spends two days to read and understand the chapter according to the books and website referred and thereafter answer the given questions.

- **Note:- 1.** Student should refer to books of class 6, 7 & 8 for reference and also the following websites: www.extramarks.com and www.topperlearning.com
 - 2. Concise MATHEMATICS I.C.S.E. Class-IX BY R.K. Bansal
 - 3. Understanding I.C.S.E. MATHEMATICS class-IX By M.L. Aggarwal.

TOPIC: - RATIONAL AND IRRATIONAL NUMBERS

THE NUMBER SYSTEM

RATIONAL NUMBERS

IMPORTANT POINTS TO REMEMBER

- $\frac{a}{b}$ is a rational number, where $b \neq 0$

 - a and b do not have any common factor other than 1 (one) i.e. a and b are coprimes
 - b is usually positive whereas a may be negative, zero or positive
- 2. Every integer (positive, negative or zero) and every decimal number is a rational number.
- Corresponding to every rational number $\frac{a}{h}$ its negative rational number is $\frac{-a}{h}$. 3. Also, $-\frac{a}{b} = \frac{a}{-b} = \frac{-a}{b}$ and so on
- A rational number $\frac{a}{b}$, where a \in I, b \in I and b \neq 0, is positive if a and b both have the 4. same sign. Thus, each of $\frac{5}{7}$, $\frac{-5}{-7}$, $\frac{-3}{-11}$ are all positive rational numbers.
 - A rational number $\frac{a}{b}$ is negative if a and b have opposite signs. Thus, each of $-\frac{5}{7}$, $\frac{5}{-7}$, $\frac{-3}{11}$ are all negative rational numbers.
- Two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$ are equal if and only if a x d = b x c. 5. i.e. $\frac{a}{b} = \frac{c}{d}$ only if $a \times d = b \times c$. Also, $\frac{a}{b} > \frac{c}{d}$, then $a \times d > b \times c$ and if $\frac{a}{b} < \frac{c}{d}$ then $a \times d < b \times c$.
- For any two rational numbers a and b, $\frac{a+b}{2}$ is also a rational number which lies between 6. a and b. Thus, a > b, then $a > \frac{a+b}{2} > b$ and if a < b, then $a < \frac{a+b}{2} < b$

Solved Example

Which of the rational numbers $\frac{3}{5}$ and $\frac{5}{7}$ is greater. Insert three rational numbers between $\frac{3}{5}$ and $\frac{5}{7}$ such that all the five numbers are in ascending order of their values.

$$\geqslant \frac{3}{5}$$
 and $\frac{5}{7}$

$$ightharpoonup \frac{3x7}{5x7}$$
 and $\frac{5x5}{7x5} = \frac{21}{35}$ and $\frac{25}{35}$

$$ightharpoonup$$
 Clearly $\frac{25}{35} > \frac{21}{35}$, Therefore $\frac{5}{7} > \frac{3}{5}$

Now.
$$\frac{3}{5} < \frac{5}{7}$$
 \Longrightarrow $\frac{3}{5} < \frac{\left(\frac{3}{5} + \frac{5}{7}\right)}{2} < \frac{5}{7}$ \Longrightarrow $\frac{3}{5} < \frac{23}{35} < \frac{5}{7}$

Now again
$$\frac{3}{5} < \frac{\left(\frac{3}{5} + \frac{23}{35}\right)}{2} < \frac{23}{35} < \frac{\left(\frac{23}{35} + \frac{5}{7}\right)}{2} < \frac{5}{7}$$
,

Therefore $\frac{3}{5} < \frac{22}{35} < \frac{23}{35} < \frac{24}{35} < \frac{5}{7}$ which are in ascending order.

Q 1 Solve the Following

- (i) Arrange $-\frac{5}{9}$, $\frac{7}{12}$, $-\frac{2}{3}$ and $\frac{11}{18}$ in the ascending order of their magnitude. Insert three rational numbers between $\frac{7}{12}$ and $\frac{11}{18}$
- (ii) Is 'Zero' a rational number? Can it be written in the form of $\frac{p}{q}$, where p and q are integers and $q\neq 0$.

PROPERTIES OF RATIONAL NUMBERS

- 1. The sum of two or more rational numbers is always a rational number.
- 2. The difference of two or more rational numbers is always a rational number. i.e. If a and b are any two rational numbers, then each of a-b and b-a is also a rational number.
- 3. The product of two or more rational numbers is always a rational number.
- 4. The division of a rational number by a non-zero rational number is always a rational number.

DECIMAL REPRESENTATION OF RATIONAL NUMBERS

<u>Terminating Decimals</u> – The rational numbers whose decimal representation terminates. i.e. the division of numerator and denominator is exact and no remainder is left.

For example
$$-\frac{1}{8} = 0.125$$
 or $3\frac{2}{5} = 3.4$

Non Terminating Decimals – The division of a numerator to denominator never ends, no matter how long it continues. The quotients of such divisions are non-terminating decimals. For example $\frac{3}{7} = 0.428571428 \dots or \frac{8}{23} = 0.7826086..$

Non Terminating Recurring Decimals – The process of division never ends and in the decimal part either a single digit or set of digits repeats in specific order.

For example
$$\frac{4}{9} = 0.444444444 \dots or \frac{4}{7} = 0.57142857142$$

<u>Note:-</u> If the <u>denominator</u> of a rational number can be expressed as **2**^m **x 5**ⁿ, where m and n are both whole numbers, the rational number is convertible into terminating decimal.

Solved Examples

Find whether each of the following is a terminating decimal or not.

(i)
$$\frac{17}{50}$$

The denominator 50 can be written as $2 \times 5 \times 5 = 2^1 \times 5^2$, i.e. 50 can be expressed as $2^m \times 5^n$. Therefore, $\frac{17}{50}$ is a terminating decimal

(ii)
$$\frac{23}{72}$$

The denominator 72 can be written as $2 \times 2 \times 2 \times 3 \times 3 = 2^3 \times 3^2$, i.e. 72 cannot be expressed as $2^{m} \times 5^{n}$. Therefore, $\frac{23}{72}$ is not a terminating decimal

Q 2 Solve the Following

Without doing any actual division, find which of the following rational numbers have terminating decimal representation.

- (i) $\frac{7}{16}$ (ii) $\frac{9}{14}$ (iii) $\frac{43}{50}$ (iv) $\frac{123}{250}$ (v) $\frac{61}{75}$

IRRATIONAL NUMBERS (Q')

- The square roots, cube roots etc of natural numbers are irrational numbers, if their exact values cannot be obtained. e.g. \sqrt{m} is irrational if exact square root of m does not exist.
- A non terminating and non recurring decimal is an irrational number. e.g. 0.4243445... 2. 3.862045...
- The number $\pi = \frac{\textit{Circumference of a Circle}}{\textit{Diameter of the circle taken}} = 3.14159265358979.....$ We often take $\frac{22}{7}$ as 3. an approximate value of π but $\pi \neq \frac{22}{7}$

Solved Example

Show that $\sqrt{2}$ is an irrational number.

We prove this by the **Method of Contradiction**

Let $\sqrt{2}$ be a rational number. Therefore $\sqrt{2} = \frac{a}{b}$ or $2 = \frac{a^2}{b^2}$ or $a^2 = 2b^2$. This means a^2 is divisible by 2 and a is also divisible by 2.

Let a = 2c, $a^2 = 4c^2$. Substituting for a^2 we get $2b^2 = 4c^2$ or $b^2 = 2c^2$. This means that b^2 is divisible by 2 and b is also divisible by 2.

From I & II above we get, a and b are both divisible by 2 i.e. a and b have a common factor 2.

This contradicts our assumption that $\frac{a}{b}$ is rational i.e. a and b do not have any common factor other than unity (1).

Thus

- $\frac{a}{b}$ is not a rational number
- $\sqrt{2}$ is not a rational number.
- $\sqrt{2}$ is an irrational number

Similarly $\sqrt{3}$, $\sqrt{5}$, $\sqrt{6}$, $3\sqrt{2}$ etc can be proved as an irrational number

Q 3 (A) Solve the Following

Show that $\sqrt{3}$ is an irrational number

Solved Example

Prove that $\sqrt{8} + 5$ is irrational

Let $\sqrt{8} + 5$ is not irrational, so $\sqrt{8} + 5$ is a rational number.

Now let $\sqrt{8} + 5 = x$, a rational number

$$x^2 = (\sqrt{8} + 5)^2 = 8 + 25 + 2\sqrt{8} \times 5 = 33 + 10\sqrt{8} = 33 + 10 \times 2\sqrt{2} = 33 + 20\sqrt{2}$$

$$x^2 = 33 + 20\sqrt{2}$$
 or $20\sqrt{2} = x^2 - 33$ and therefore $\sqrt{2} = \frac{x^2 - 33}{20}$ (I)

 $x^2 = 33 + 20\sqrt{2}$ or $20\sqrt{2} = x^2 - 33$ and therefore $\sqrt{2} = \frac{x^2 - 33}{20}$ (I) Since it is assumed that $\sqrt{8} + 5 = x$ is rational, x^2 is rational and $\frac{x^2 - 33}{20} = \sqrt{2}$ is also rational

But $\sqrt{2}$ is irrational i.e. x^2 is irrational

(II)

From I we arrive at x^2 is rational From II we arrive at x^2 is irrational

Therefore we arrive at a contradiction. So our assumption that $\sqrt{8} + 5$ is rational is wrong

Therefore, $\sqrt{8} + 5$ is irrational.

Q 3 (B) Solve the Following

Show that $3 - \sqrt{2}$ is irrational.

Solved Example

Find two irrational numbers between 2 and 3

Since 2 = $\sqrt{4}$ and 3 = $\sqrt{9}$, therefore, each of $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ and $\sqrt{8}$ is an irrational number between 2 and 3.

Q 4 Solve the Following

- Insert two irrational numbers between 5 and 6. (i)
- Insert five irrational numbers between $2\sqrt{5}$ and $3\sqrt{3}$ (ii)

Solved Example

Find two rational numbers between $\sqrt{2}$ and $\sqrt{3}$

Take any two rational numbers between 2 and 3 which are perfect squares i.e. 2.25, 2.56. 2.89.etc

Therefore, $\sqrt{2} < \sqrt{3}$ \Rightarrow $\sqrt{2} < \sqrt{2.25} < \sqrt{2.56} < \sqrt{3}$ \Rightarrow $\sqrt{2} < 1.5 < 1.6 < \sqrt{3}$

Q 5 Solve the Following

Write three rational numbers between $\sqrt{3}$ and $\sqrt{5}$

Solved Example

Identify each of the following as rational or irrational number.

- $(2 + \sqrt{2})^2 = 2^2 + 2 \times 2 \times \sqrt{2} + (\sqrt{2})^2 = 4 + 4\sqrt{2} + 2$ (i) $=6+4\sqrt{2}$ which is an irrational number Therefore, $(2 + \sqrt{2})^2$ is an irrational number
- $\left(\frac{3}{2\sqrt{2}}\right)^2 = \frac{9}{4x^2} = \frac{9}{8}$ which is a rational number Therefore, $\left(\frac{3}{2\sqrt{2}}\right)^2$ is a rational number

Q 6 Solve the Following

State whether the following numbers are rational or not.

(i)
$$(3 - \sqrt{3})^2$$

(i)
$$(3-\sqrt{3})^2$$
 (ii) $(5+\sqrt{5})(5-\sqrt{5})$ (iii) $(\sqrt{3}-\sqrt{2})^2$ (iv) $(\frac{\sqrt{7}}{6\sqrt{2}})^2$

(iii)
$$\left(\sqrt{3} - \sqrt{2}\right)^2$$

(iv)
$$\left(\frac{\sqrt{7}}{6\sqrt{2}}\right)^2$$

B. Find the square of

(i)
$$\left(\frac{3\sqrt{5}}{5}\right)$$

(i)
$$\left(\frac{3\sqrt{5}}{5}\right)$$
 (ii) $\left(\sqrt{3} + \sqrt{2}\right)$ (iii) $\left(\sqrt{5} - 2\right)$ (iv) $3 + 2\sqrt{5}$

(iii)
$$(\sqrt{5} - 2)$$

(iv)
$$3 + 2\sqrt{5}$$

Solved Example

Which of the following numbers is greater

- $3\sqrt{2}$ or $2\sqrt{3}$ (i) $3\sqrt{2} = \sqrt{3^2 \times 2} = \sqrt{18}$ $2\sqrt{3} = \sqrt{2^2 \times 3} = \sqrt{12}$ Since $\sqrt{18} > \sqrt{12}$, we conclude that $3\sqrt{2} > 2\sqrt{3}$
- $6\sqrt[3]{3}$ and $5\sqrt[3]{4}$ (ii)

6
$$\sqrt[3]{3} = \sqrt[3]{6^3x \ 3} = \sqrt[3]{648}$$

5 $\sqrt[3]{4} = \sqrt[3]{5^3x \ 4} = \sqrt[3]{500}$
Since $\sqrt[3]{648} > \sqrt[3]{500}$, we conclude that 6 $\sqrt[3]{3} > 5 \sqrt[3]{4}$

Q 7 Solve the Following

Write in ascending order

(i) $3\sqrt{5}$ and $4\sqrt{3}$ (ii) $2\sqrt[3]{5}$ and $3\sqrt[3]{2}$ (iii) $6\sqrt{5}$ and $7\sqrt{3}$

Solved Example

 $\sqrt[3]{4}$ and $\sqrt{3}$ Compare

$$\sqrt[3]{4} = 4^{\frac{1}{3}}$$
 and $\sqrt{3} = 3^{\frac{1}{2}}$

Convert the powers into like fractions i.e. $\frac{1}{3} = \frac{1 \times 2}{3 \times 2} = \frac{2}{6}$ and $\frac{1}{2} = \frac{1 \times 3}{2 \times 3} = \frac{3}{6}$

$$\sqrt[3]{4} = 4^{\frac{1}{3}} = 4^{\frac{2}{6}} = (4^2)^{\frac{1}{6}} = 16^{\frac{1}{6}}$$

$$\sqrt{3} = 3^{\frac{1}{2}} = 3^{\frac{3}{6}} = (3^3)^{\frac{1}{6}} = 27^{\frac{1}{6}}$$
Clearly $27^{\frac{1}{6}} > 16^{\frac{1}{6}}$, therefore $\sqrt{3} > \sqrt[3]{4}$

Q 8 Solve the Following

Α. Compare

(i) $\sqrt[6]{15}$ and $\sqrt[4]{12}$ (ii) $\sqrt{24}$ and $\sqrt[3]{35}$

В. Simplify each of the following

(i)
$$\sqrt[5]{16} x \sqrt[5]{2}$$

(ii)
$$\frac{\sqrt[4]{243}}{\sqrt[4]{3}}$$

(iii)
$$(3 + \sqrt{2}) (4 + \sqrt{7})$$
 (iv) $(\sqrt{3} - \sqrt{2})^2$

(iv)
$$(\sqrt{3} - \sqrt{2})^2$$

IMPORTANT POINTS TO REMEMBER

- For any two positive rational numbers x and y, if \sqrt{x} and \sqrt{y} are irrational, then if 1. $\sqrt{x} > \sqrt{y}$ implies x > y and $\sqrt{x} < \sqrt{y}$ implies x < y
- If $a + b\sqrt{x} = c + d\sqrt{x}$, then a = c and b = d2.
- 3. The negative of an irrational number is always irrational.
- 4. The sum of a rational and irrational number is always irrational.
- 5. The product of a non-zero rational and irrational number is always irrational.
- 6. The sum, the difference, the product and the quotient of two irrational numbers need not be an irrational number.

SURDS (RADICALS)

If x is a positive rational number and n is an integer such that $x^{\frac{1}{n}}$, i.e. $\sqrt[n]{x}$ is irrational, then $x^{\frac{1}{n}}$ is called a surd or a radical. Examples $\sqrt{3}$, $\sqrt[4]{8}$, $\sqrt[3]{20}$ etc are all Surds.

IMPORTANT POINTS

- 1. Every surd is an irrational number but every irrational number is not a surd. For example π is an irrational number but not a surd.
- Let a be a rational number and n be a positive number greater than 1, Then $\sqrt[n]{a}$ or $a^{\frac{1}{n}}$ is 2. called a surd of order n. Example $\sqrt{3}$ is a surd of order 2.

RATIONALIZATION

When two surds are multiplied together such that their product is a rational number, the two surds are called rationalizing factors of each other.

The process of rationalizing a surd by multiplying it with its rationalizing factor is called Rationalization.

Example

- (i) $5\sqrt{2} \times 3\sqrt{2} = 15 \times 2 = 30$ which is a rational number. Therefore $5\sqrt{2}$ and $3\sqrt{2}$ are rationalizing factors of each other.
- (ii) $(3 + \sqrt{5})(3 \sqrt{5}) = 3^2 \sqrt{5}^2 = 9 5 = 4$ which is a rational number. Therefore $(3 + \sqrt{5})$ and $(3 - \sqrt{5})$ are rationalizing factors of each other.

Q 9 Solve the Following

Rationalize the denominator of

- (i)
- $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ (ii) $\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}$ (iii) $\frac{2\sqrt{5}+3\sqrt{2}}{2\sqrt{5}-3\sqrt{2}}$ (iv) $\frac{3}{\sqrt{5}+\sqrt{2}}$

Solved Example

Find the value of a and b in the equation $\frac{2+\sqrt{3}}{2-\sqrt{3}} = a + b\sqrt{3}$

$$\frac{2+\sqrt{3}}{2-\sqrt{3}} = \frac{2+\sqrt{3}}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} = \frac{\left(2+\sqrt{3}\right)^2}{2^2-\sqrt{3}^2} = \frac{2^2+2\times2\times\sqrt{3}+\sqrt{3}^2}{4-3} = \frac{4+4\sqrt{3}+3}{1} = 7+4\sqrt{3}$$

Therefore, $a + b\sqrt{3} = 7 + 4\sqrt{3}$. This implies a = 7 and b = 4

Q 10 Solve the Following

Find the value of a and b in each of the following

(i)
$$\frac{\sqrt{7}-2}{\sqrt{7}+2} = a\sqrt{7} + 6$$

(ii)
$$\frac{3}{\sqrt{3}-\sqrt{2}} = a\sqrt{3} - b\sqrt{2}$$

(iii)
$$\frac{5+3\sqrt{2}}{5-3\sqrt{2}} = a + b\sqrt{2}$$

Solved Example

Simplify
$$\frac{22}{2\sqrt{3}+1} + \frac{17}{2\sqrt{3}-1}$$

$$\frac{22}{2\sqrt{3}+1} + \frac{17}{2\sqrt{3}-1} = \frac{22}{2\sqrt{3}+1} \times \frac{2\sqrt{3}-1}{2\sqrt{3}-1} + \frac{17}{2\sqrt{3}-1} \times \frac{2\sqrt{3}+1}{2\sqrt{3}-1} = \frac{22 (2\sqrt{3}-1)}{(2\sqrt{3})^2-1^2} + \frac{17 (2\sqrt{3}+1)}{(2\sqrt{3})^2-1^2} = \frac{44\sqrt{3}-22+34\sqrt{3}+17}{12-1} \times \frac{17}{2\sqrt{3}-1} \times$$

$$=\frac{78\sqrt{3}-5}{11}$$

Q 11 Solve the Following

A. Evaluate
$$\frac{4-\sqrt{3}}{4+\sqrt{3}} + \frac{4+\sqrt{5}}{4-\sqrt{5}}$$

B. Show that
$$\frac{1}{3-2\sqrt{2}} - \frac{1}{2\sqrt{2}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2} = 5$$

C. If
$$x = 2\sqrt{3} + 2\sqrt{2}$$
, find the values of $\frac{1}{x}$, $x + \frac{1}{x}$, $\left(x + \frac{1}{x}\right)^2$

-----END-----