Girls' High School and College, Prayagraj

Session: 2020-21

Class 8 (A,B,C,D,E)

Subject - Mathematics

Worksheet 6

Instructions : Parents kindly ensure that the child understands the given examples to solve the questions that follow. Students can also refer to class 8 Maths book or internet

Chapter - Rational Numbers (part 1)

Rational Number - If p and q are both integers and $q \neq 0$, then $\frac{p}{q}$ is called a rational number.
Example $-\frac{3}{7}$ is a rational number as -3 and 7 both are integers and $7 \neq 0$

Remember

1. Zero can be written as $\frac{\mathbf{0}}{\mathbf{1}}, \frac{\mathbf{0}}{\mathbf{2}}, \frac{\mathbf{0}}{\mathbf{- 1 0}}, \frac{\mathbf{0}}{\mathbf{- 1 3}}$, etc. in each of these cases denominator $\neq 0$.

So 0 can be expressed as a fraction with a non - zero denominator therefore zero is a rational number.
2. Every natural number, every whole number, every integer and every fraction is a rational number.
3. In the rational number $\frac{p}{q}$, where p and q are integers and $\mathrm{q} \neq$ zero, integer p is called numerator and integer q is called the denominator.
Example: $\ln -\frac{8}{15}$, numerator $=-8$ and denominator $=15$.
4. A rational number is positive if it's numerator and denominator have same signs.

Thus
(i) $\frac{\mathbf{5}}{\mathbf{8}}, \frac{\mathbf{5}}{\mathbf{8}}$, etc Is positive
(ii) $\frac{-5}{8}, \frac{5}{-8}$ is negative
5. A rational number $\frac{p}{q}$ is said to be in standard form, if :
(i) p and q have no common divisor (factor) other than one (1) and
(ii) q is positive

Example: $\frac{3}{5}$ Is a rational number in standard form

PROPERTIES OF ADDITION OF RATIONAL NUMBERS.

1. Closure property

If two rational numbers are added together, the result is always a rational number
For example
Addition of rational numbers $\frac{3}{4}$ and $\frac{5}{6}$
$=\frac{3}{4}+\frac{5}{6}=\frac{9}{12}+\frac{10}{12}=\frac{9+10}{12}=\frac{19}{12}$, which is a rational number.
Thus according to the closure property, if $\frac{a}{b}$ and $\frac{c}{d}$ are two rational numbers, then their addition $\frac{a}{b}+\frac{c}{d}$ Is also a rational number.
We say, set of rational numbers is closed for addition.
2. Commutativity

The addition of two rational numbers is commutative.
According to commutative property of addition, if $\frac{a}{b}$ and $\frac{c}{d^{\prime}}$,
are any two rational numbers then $\frac{a}{b}+\frac{c}{d}=\frac{c}{d}+\frac{a}{b}$.
For Example
Consider the rational numbers $-\frac{7}{12}$ and $\frac{5}{8}$.
$\frac{-7}{12}+\frac{5}{8}=\frac{-14+15}{24}=\frac{1}{24}$
and $\frac{5}{8}+\frac{-7}{12}=\frac{15-14}{24}=\frac{1}{24}$
$\frac{-7}{12}+\frac{5}{8}=\frac{5}{8}+\frac{-7}{12}$
3. Associativity

The addition of rational numbers is associative.
According to this property, if $\frac{a}{b}, \frac{c}{d}$ and $\frac{\mathrm{e}}{\mathrm{f}}$ are any three rational numbers, then
$\frac{a}{b}+\left[\frac{c}{d}+\frac{e}{f}\right]=\left[\frac{a}{b}+\frac{c}{d}\right]+\frac{e}{f}$
For Example
Consider the rational numbers $\frac{2}{3}, \frac{-5}{6}$ and $\frac{7}{12}$.

$$
\begin{aligned}
\frac{2}{3}+\left[\frac{-5}{6}+\frac{7}{12}\right] & =\frac{2}{3}+\left[\frac{-10}{12}+\frac{7}{12}\right] \\
& =\frac{2}{3}+\frac{-3}{12}=\frac{8-3}{12}=\frac{5}{12}
\end{aligned}
$$

And,

$$
\begin{aligned}
{\left[\frac{2}{3}+\frac{-5}{6}\right]+\frac{7}{12} } & =\left[\frac{4}{6}+\frac{-5}{6}\right]+\frac{7}{12} \\
& =\frac{-1}{6}+\frac{7}{12}=\frac{-2+7}{12}=\frac{5}{12} \\
& =\frac{2}{3}+\left[\frac{-5}{6}+\frac{7}{12}\right]=\left[\frac{2}{3}+\frac{-5}{6}\right]+\frac{7}{12}
\end{aligned}
$$

4. Existence of additive identity of rational numbers

Additive identity for rational numbers is zero(0)
$0+$ a rational number $=$ The same rational number +0 .
Pg2/8
$=$ The rational number itself

For example
$0+\frac{-3}{5}=-\frac{3}{5}+0=-\frac{3}{5}$
5. Existence of additive inverse of a rational number

The negative of a rational number is called an additive inverse
The additive inverse of $\frac{3}{5}=-\frac{3}{5}$.
The sum of a rational number and is additive inverse = Additive identity.
Any rational number+ it's additive inverse $=0$, the additive identity
For Example
$\frac{3}{5}+\left[-\frac{3}{5}\right]=0$

Example 1

Add each pair of rational numbers, given below, and show that their addition is also a rational number:
(i) $\frac{7}{15}$ and $\frac{3}{5}$
(ii) $\frac{3}{8}$ and $\frac{-5}{12}$

Solution:

(i) $\frac{7}{15}+\frac{3}{5}=\frac{7}{15}+\frac{3 \times 3}{5 x 3}$

$$
\begin{aligned}
& =\frac{7}{15}+\frac{9}{15} \\
& =\frac{7+9}{15}=\frac{16}{15} \text { which is a rational number. }
\end{aligned}
$$

(ii) $\frac{3}{8}+\frac{-5}{12}=\frac{3 x 3}{8 \times 3}+\frac{-5 \times 2}{12 x 2}$

$$
=\frac{9}{24}+\frac{-10}{24}=\frac{9-10}{24}=\frac{-1}{24} \text { which is a rational number }
$$

Question 1 :Add each pair of rational numbers, given below, and show that their addition(sum) is also a rational number
(i) $\frac{-5}{8}$ and $\frac{3}{8}$
(ii) $\frac{5}{-26}$ and $\frac{8}{39}$
(iii) $\frac{5}{-6}$ and $\frac{2}{3}$
(iv) $\frac{7}{-18}$ and $\frac{8}{27}$

Example 2

Evaluate $\frac{3}{4}+\frac{5}{6}+\frac{-1}{4}+\frac{-7}{6}$

Solution

$$
\begin{aligned}
\frac{3}{4}+\frac{5}{6}+\frac{-1}{4}+\frac{-7}{6} & =\left[\frac{3}{4}+\frac{-1}{4}\right]+\left[\frac{5}{6}+\frac{-7}{6}\right] \\
& =\frac{3-1}{4}+\frac{5-7}{6} \\
& =\frac{2}{4}+\frac{-2}{6} \\
& =\frac{1}{2}-\frac{1}{3} \\
& =\frac{3-2}{6}=\frac{1}{6}
\end{aligned}
$$

Question 2 : Evaluate

(i) $\frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9}$
(ii) $\frac{2}{3}+\frac{-4}{5}+\frac{1}{3}+\frac{2}{5}$

Example 3

Use rational numbers $\frac{4}{9}$ and $\frac{-7}{12}$ to verify the commutative property for the addition of rational numbers.

Solution

$\frac{4}{9}+\frac{-7}{12}=\frac{16-21}{36}=\frac{-5}{36}$
And $\frac{-7}{12}+\frac{4}{9}=\frac{-21+16}{36}=\frac{-5}{36}$
Therefore, $\frac{4}{9}+\frac{-7}{12}=\frac{-7}{12}+\frac{4}{9}$
This verifies the commutative property for the addition of rational numbers.
Question 3: For each pair of rational numbers, verify commutative property of addition of rational numbers.
(i) $\frac{-8}{7}$ and $\frac{5}{14}$
(ii) $\frac{2}{-5}$ and $\frac{11}{-15}$
(iii) 3 and $\frac{-2}{7}$

Example 4

Use rational numbers $\frac{-4}{5}, \frac{7}{10}$ and $\frac{11}{-20}$ to verify the associative property of the addition of rational numbers.

Solution

Show that $\frac{-4}{5}+\left[\frac{7}{10}+\frac{11}{-20}\right]=\left[\frac{-4}{5}+\frac{7}{10}\right]+\frac{11}{-20}$

$$
\begin{aligned}
\frac{-4}{5}+\left[\frac{7}{10}+\frac{11}{-20}\right] & =\frac{-4}{5}+\left[\frac{7}{10}+\frac{-11}{20}\right] \\
& =\frac{-4}{5}+\left[\frac{14-11}{20}\right] \\
& =\frac{-4}{5}+\frac{3}{20} \\
& =\frac{-16+3}{20}=\frac{-13}{20}
\end{aligned}
$$

$$
\text { And }\left[\frac{-4}{5}+\frac{7}{10}\right]+\frac{11}{-20}=\left[\frac{-4 x 2}{5 x 2}+\frac{7}{10}\right]+\frac{11}{-20}
$$

$$
=\frac{-8+7}{10}+\frac{-11}{20}
$$

$$
=\frac{-1}{10}+\frac{-11}{20}
$$

$$
=\frac{-2-11}{20}=\frac{-13}{20}
$$

Therefore, $\frac{-4}{5}+\left[\frac{7}{10}+\frac{11}{-20}\right]=\left[\frac{-4}{5}+\frac{7}{10}\right]+\frac{-11}{20}$
Question 4 : For each set of rational numbers, given below, verify the associative property of addition of rational numbers:
(i) $\frac{1}{2}, \frac{2}{3}$ and $-\frac{1}{6}$
(ii) $\frac{-7}{9}, \frac{2}{-3}$ and $\frac{-5}{18}$

Example 5

Write the additive inverse of:
(i) $\frac{3}{8}$

Pg5/8
(ii) $\frac{-8}{15}$

Solution:

(i) The additive inverse of $\frac{3}{8}$ is $-\frac{3}{8}$
(ii) The additive inverse of $\frac{-8}{15}$ is $\frac{8}{15}$

QUESTION 5: Write the additive inverse of
(i) $\frac{-3}{8}$
(ii) $\frac{4}{-9}$
(iii) $\frac{-4}{-13}$

PROPERTIES OF SUBTRACTION OF RATIONAL NUMBERS

1. Closure property

According to the closure property, if $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$ are two rational numbers then $\frac{a}{b}-\frac{c}{d}$ is also a rational number. And so is $\frac{\mathrm{c}}{\mathrm{d}}-\frac{a}{b}$.
For Example
$\frac{3}{5}-\frac{5}{10}=\frac{3 x 2}{5 x 2}-\frac{5}{10}$
$=\frac{6-5}{10}=\frac{1}{10}$, which is a rational number.
2. Commutativity

If $\frac{a}{b}$ and $\frac{c}{d}$ are any two rational numbers then $\frac{a}{b}-\frac{c}{d} \neq \frac{c}{d}-\frac{a}{b}$. Hence, the subtraction of rational numbers is not commutative.
For Example
Consider the rational numbers $\frac{-7}{12}$ and $\frac{5}{8}$
$\frac{-7}{12}-\frac{5}{8}=\frac{-14-15}{24}=\frac{-29}{24}$
And,
$\frac{5}{8}-\left[\frac{-7}{12}\right]=\frac{5}{8}+\frac{7}{12}=\frac{15+14}{24}=\frac{29}{24}$
Hence, $\frac{-7}{12}-\frac{5}{8} \neq \frac{5}{8}-\left(\frac{-7}{12}\right)$
3. Associativity.

Pg6/8
The subtraction of rational numbers is not associative .i.e. if $\frac{a}{b}, \frac{c}{d}$ and $\frac{e}{f}$ are three rational numbers, then

$$
\begin{aligned}
& \frac{a}{b}-\left[\frac{c}{d}-\frac{e}{f}\right] \neq\left[\frac{a}{b}-\frac{c}{d}\right]-\frac{e}{f} \\
& \text { For Example } \\
& \text { Consider the rational numbers } \frac{2}{3}, \frac{-5}{6} \text { and } \frac{7}{12} \\
& \begin{aligned}
\frac{2}{3}-\left[\frac{-5}{6}-\frac{7}{12}\right] & =\frac{2}{3}-\left[\frac{-10}{12}-\frac{7}{12}\right] \\
& =\frac{2}{3}-\left[\frac{-17}{12}\right] \\
& =\frac{2}{3}+\frac{17}{12} \\
& =\frac{8+17}{12}=\frac{25}{12}
\end{aligned}
\end{aligned}
$$

And, $\left(\frac{2}{3}-\frac{-5}{6}\right)-\frac{7}{12}=\left(\frac{4}{6}+\frac{5}{6}\right)-\frac{7}{12}$

$$
=\frac{9}{6}-\frac{7}{12}
$$

$$
=\frac{18}{12}-\frac{7}{12}=\frac{11}{12}
$$

Therefore, $\frac{2}{3}-\left(\frac{-5}{6}-\frac{7}{12}\right) \neq\left(\frac{2}{3}-\frac{-5}{6}\right)-\frac{7}{12}$

Question 6: Evaluate
(i) $\frac{2}{3}-\frac{4}{5}$
(ii) $\frac{-4}{9}-\frac{2}{-3}$
(iii) $\frac{5}{21}-\frac{-13}{42}$

Question 7: Subtract
(i) $\frac{5}{8}$ from $\frac{-3}{8}$
(ii) $\frac{8}{11}$ from $\frac{4}{11}$
(iii) $\frac{-9}{22}$ from $\frac{5}{33}$

Question 8: The sum of two rational numbers is $\frac{9}{20}$. If one of them is $\frac{2}{5}$, find the other.
Question 9: Which rational number should be added to $\frac{-7}{8}$ to get $\frac{5}{9}$?

Question 10: What should be subtracted from -2 to get $\frac{3}{8}$?

Question 11: Evaluate
(i) $\frac{3}{7}+\frac{-4}{9}-\frac{-11}{7}-\frac{7}{9}$
(ii) $\frac{4}{7}-\frac{-8}{9}-\frac{-13}{7}+\frac{17}{9}$

