Girls' High School and College, Prayagraj

Session: 2020-21

Class 8 (A,B,C,D,E)

Subject – Mathematics

Worksheet 6

Instructions: Parents kindly ensure that the child understands the given examples to solve the guestions that follow. Students can also refer to class 8 Maths book or internet

Chapter – Rational Numbers (part 1)

Rational Number – If p and q are both integers and q \neq 0, then $\frac{p}{q}$ is called a rational number.

Example $-\frac{3}{7}$ is a rational number as -3 and 7 both are integers and $7 \neq 0$

Remember

1. Zero can be written as $\frac{0}{1}, \frac{0}{2}, \frac{0}{-10}, \frac{0}{-13}$, etc. in each of these cases denominator $\neq 0$.

So 0 can be expressed as a fraction with a non - zero denominator therefore zero is a rational number.

- 2. Every natural number, every whole number, every integer and every fraction is a rational number.
- 3. In the rational number $\frac{p}{q}$, where p and q are integers and q \neq zero, integer p is called numerator and integer q is called the denominator.

Example: $\ln -\frac{8}{15}$, numerator=-8 and denominator =15.

4. A rational number is positive if it's numerator and denominator have same signs. Thus

(i)
$$\frac{5}{6}, \frac{-5}{6}$$
, etc ls positive

ii)
$$\frac{-5}{2}$$
, $\frac{5}{2}$ is negative

- (ii) $\frac{-3}{8}$, $\frac{3}{-8}$ is negative 5. A rational number $\frac{p}{q}$ is said to be in standard form, if :
 - p and q have no common divisor (factor) other than one (1) and (i)
 - (ii) q is positive

Example : $\frac{3}{5}$ Is a rational number in standard form

Pq1/8

PROPERTIES OF ADDITION OF RATIONAL NUMBERS.

1. Closure property

If two rational numbers are added together, the result is always a rational number For example

Addition of rational numbers $\frac{3}{4}$ and $\frac{5}{6}$ $=\frac{3}{4}+\frac{5}{6}=\frac{9}{12}+\frac{10}{12}=\frac{9+10}{12}=\frac{19}{12}$, which is a rational number. Thus according to the closure property, if $\frac{a}{b}$ and $\frac{c}{d}$ are two rational numbers, then their addition $\frac{a}{b} + \frac{c}{d}$ is also a rational number. We say, set of rational numbers is closed for addition.

2. Commutativity

The addition of two rational numbers is commutative.

According to commutative property of addition, if $\frac{a}{b}$ and $\frac{c}{a'}$

are any two rational numbers then $\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b}$.

For Example

Consider the rational numbers
$$-\frac{7}{12}$$
 and $\frac{5}{8}$.

$$\frac{-7}{12} + \frac{5}{8} = \frac{-14 + 15}{24} = \frac{1}{24}$$

and $\frac{5}{8} + \frac{-7}{12} = \frac{15 - 14}{24} = \frac{1}{24}$
 $\frac{-7}{12} + \frac{5}{8} = \frac{5}{8} + \frac{-7}{12}$

3. Associativity

The addition of rational numbers is associative.

According to this property, if $\frac{a}{b}$, $\frac{c}{d}$ and $\frac{e}{f}$ are any three rational numbers, then

$$\frac{a}{b} + \left[\frac{c}{d} + \frac{e}{f}\right] = \left[\frac{a}{b} + \frac{c}{d}\right] + \frac{e}{f}$$

For Example

Consider the rational numbers $\frac{2}{3}$, $\frac{-5}{6}$ and $\frac{7}{12}$. $\frac{2}{3} + \left[\frac{-5}{6} + \frac{7}{12}\right] = \frac{2}{3} + \left[\frac{-10}{12} + \frac{7}{12}\right]$ $=\frac{2}{3}+\frac{-3}{12}=\frac{8-3}{12}=\frac{5}{12}$ And. And, $\begin{bmatrix} \frac{2}{3} + \frac{-5}{6} \end{bmatrix} + \frac{7}{12} = \begin{bmatrix} \frac{4}{6} + \frac{-5}{6} \end{bmatrix} + \frac{7}{12}$ $= \frac{-1}{6} + \frac{7}{12} = \frac{-2+7}{12} = \frac{5}{12}$ $= \frac{2}{3} + \begin{bmatrix} \frac{-5}{6} + \frac{7}{12} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} + \frac{-5}{6} \end{bmatrix} + \frac{7}{12}$ 4. Existence of additive identity of rational numbers

Additive identity for rational numbers is zero(0) 0+ a rational number = The same rational number +0. = The rational number itself

Pg2/8

For example

$$0 + \frac{-3}{5} = -\frac{3}{5} + 0 = -\frac{3}{5}$$

5. Existence of additive inverse of a rational number

The negative of a rational number is called an additive inverse

The additive inverse of
$$\frac{3}{5} = -\frac{3}{5}$$
.

The sum of a rational number and is additive inverse = Additive identity.

Any rational number+ it's additive inverse = 0, the additive identity

For Example

$$\frac{3}{5} + \left[-\frac{3}{5} \right] = 0$$

Example 1

Add each pair of rational numbers, given below, and show that their addition is also a rational number:

(i)
$$\frac{7}{15}$$
 and $\frac{3}{5}$
(ii) $\frac{3}{8}$ and $\frac{-5}{12}$

Solution:

(i)
$$\frac{7}{15} + \frac{3}{5} = \frac{7}{15} + \frac{3x3}{5x3}$$

= $\frac{7}{15} + \frac{9}{15}$
= $\frac{7+9}{15} = \frac{16}{15}$ which is a rational number.

(ii)
$$\frac{3}{8} + \frac{-5}{12} = \frac{3x3}{8x3} + \frac{-5x2}{12x2}$$

= $\frac{9}{24} + \frac{-10}{24} = \frac{9-10}{24} = \frac{-1}{24}$ which is a rational number

Question 1 :Add each pair of rational numbers, given below, and show that their addition(sum) is also a rational number

(i)
$$\frac{-5}{8}$$
 and $\frac{3}{8}$
(ii) $\frac{5}{-26}$ and $\frac{8}{39}$
(iii) $\frac{5}{-6}$ and $\frac{2}{3}$
(iv) $\frac{7}{-18}$ and $\frac{8}{27}$

Example 2

Evaluate $\frac{3}{4} + \frac{5}{6} + \frac{-1}{4} + \frac{-7}{6}$

Solution

$$\frac{3}{4} + \frac{5}{6} + \frac{-1}{4} + \frac{-7}{6} = \left[\frac{3}{4} + \frac{-1}{4}\right] + \left[\frac{5}{6} + \frac{-7}{6}\right]$$
$$= \frac{3-1}{4} + \frac{5-7}{6}$$
$$= \frac{2}{4} + \frac{-2}{6}$$
$$= \frac{1}{2} - \frac{1}{3}$$
$$= \frac{3-2}{6} = \frac{1}{6}$$

Question 2 : Evaluate

(i) $\frac{3}{7} + \frac{-4}{9} + \frac{-11}{7} + \frac{7}{9}$ (ii) $\frac{2}{3} + \frac{-4}{5} + \frac{1}{3} + \frac{2}{5}$

Example 3

Use rational numbers $\frac{4}{9}$ and $\frac{-7}{12}$ to verify the commutative property for the addition of rational numbers.

Solution

$$\frac{4}{9} + \frac{-7}{12} = \frac{16 - 21}{36} = \frac{-5}{36}$$

And $\frac{-7}{12} + \frac{4}{9} = \frac{-21 + 16}{36} = \frac{-5}{36}$
Therefore, $\frac{4}{9} + \frac{-7}{12} = \frac{-7}{12} + \frac{4}{9}$

This verifies the commutative property for the addition of rational numbers.

Question 3: For each pair of rational numbers, verify commutative property of addition of rational numbers.

(i)
$$\frac{-8}{7}$$
 and $\frac{5}{14}$
(ii) $\frac{2}{-5}$ and $\frac{11}{-15}$ Pg4/8
(iii) $3 \text{ and } \frac{-2}{7}$

Example 4

Use rational numbers $\frac{-4}{5}$, $\frac{7}{10}$ and $\frac{11}{-20}$ to verify the associative property of the addition of rational numbers.

Solution

Show that $\frac{-4}{5} + \left[\frac{7}{10} + \frac{11}{-20}\right] = \left[\frac{-4}{5} + \frac{7}{10}\right] + \frac{11}{-20}$ $\frac{-4}{5} + \left[\frac{7}{10} + \frac{11}{-20}\right] = \frac{-4}{5} + \left[\frac{7}{10} + \frac{-11}{20}\right]$ $= \frac{-4}{5} + \left[\frac{14-11}{20}\right]$ $= \frac{-4}{5} + \frac{3}{20}$ $= \frac{-16+3}{20} = \frac{-13}{20}$ And $\left[\frac{-4}{5} + \frac{7}{10}\right] + \frac{11}{-20} = \left[\frac{-4x^2}{5x^2} + \frac{7}{10}\right] + \frac{11}{-20}$ $= \frac{-8+7}{10} + \frac{-11}{20}$ $= \frac{-1}{10} + \frac{-11}{20}$ $= \frac{-2-11}{20} = \frac{-13}{20}$

Therefore, $\frac{-4}{5} + \left[\frac{7}{10} + \frac{11}{-20}\right] = \left[\frac{-4}{5} + \frac{7}{10}\right] + \frac{-11}{20}$

Question 4 : For each set of rational numbers, given below, verify the associative property of addition of rational numbers:

(i)	$\frac{1}{2}, \frac{2}{3} \text{ and } -\frac{1}{6}$
(ii)	$\frac{-7}{9}$, $\frac{2}{-3}$ and $\frac{-5}{18}$

Example 5

Write the additive inverse of:

(i)
$$\frac{3}{8}$$

(ii) $\frac{-8}{15}$ Pg5/8

Solution:

- (i) The additive inverse of $\frac{3}{8}$ is $-\frac{3}{8}$
- (ii) The additive inverse of $\frac{-8}{15}$ is $\frac{8}{15}$

QUESTION 5: Write the additive inverse of

- (i) $\frac{-3}{8}$ (ii) $\frac{4}{-9}$
- (iii) $\frac{-4}{-13}$

PROPERTIES OF SUBTRACTION OF RATIONAL NUMBERS

1. Closure property

According to the closure property, if $\frac{a}{b}$ and $\frac{c}{d}$ are two rational numbers then $\frac{a}{b} - \frac{c}{d}$ is also a rational number. And so is $\frac{c}{d} - \frac{a}{b}$.

For Example

$$\frac{\frac{3}{5}}{\frac{5}{10}} = \frac{\frac{3x^2}{5x^2}}{\frac{5x^2}{10}} - \frac{\frac{5}{10}}{\frac{1}{10}}$$
$$= \frac{\frac{6-5}{10}}{\frac{1}{10}} = \frac{1}{\frac{1}{10}}, \text{ which is a rational number.}$$

2. Commutativity

If $\frac{a}{b}$ and $\frac{c}{d}$ are any two rational numbers then $\frac{a}{b} - \frac{c}{d} \neq \frac{c}{d} - \frac{a}{b}$. Hence, the subtraction of rational numbers is not commutative.

For Example

Consider the rational numbers
$$\frac{-7}{12}$$
 and $\frac{5}{8}$
 $\frac{-7}{12} - \frac{5}{8} = \frac{-14 - 15}{24} = \frac{-29}{24}$
And,
 $\frac{5}{8} - \left[\frac{-7}{12}\right] = \frac{5}{8} + \frac{7}{12} = \frac{15 + 14}{24} = \frac{29}{24}$
Hence, $\frac{-7}{12} - \frac{5}{8} \neq \frac{5}{8} - (\frac{-7}{12})$

3. Associativity.

Pg6/8

The subtraction of rational numbers is not associative .i.e. $if_{\overline{b}}^{\underline{a}}, \frac{c}{d}$ and $\frac{e}{f}$ are three rational numbers, then

$$\frac{a}{b} - \left[\frac{c}{d} - \frac{e}{f}\right] \neq \left[\frac{a}{b} - \frac{c}{d}\right] - \frac{e}{f}$$
For Example
Consider the rational numbers $\frac{2}{3}, \frac{-5}{6}$ and $\frac{7}{12}$.
 $\frac{2}{3} - \left[\frac{-5}{6} - \frac{7}{12}\right] = \frac{2}{3} - \left[\frac{-10}{12} - \frac{7}{12}\right]$
 $= \frac{2}{3} - \left[\frac{-17}{12}\right]$
 $= \frac{2}{3} + \frac{17}{12}$
 $= \frac{8+17}{12} = \frac{25}{12}$
And, $\left(\frac{2}{3} - \frac{-5}{6}\right) - \frac{7}{12} = \left(\frac{4}{6} + \frac{5}{6}\right) - \frac{7}{12}$
 $= \frac{9}{6} - \frac{7}{12}$
 $= \frac{18}{12} - \frac{7}{12} = \frac{11}{12}$
Therefore, $\frac{2}{3} - \left(\frac{-5}{6} - \frac{7}{12}\right) \neq \left(\frac{2}{3} - \frac{-5}{6}\right) - \frac{7}{12}$

Question 6: Evaluate

(i)	$\frac{2}{3}$ –	4 5
(ii)	$\frac{-4}{9}$ -	$-\frac{2}{-3}$
(iii)	$\frac{5}{21}$ -	$-\frac{-13}{42}$

Question 7: Subtract

(i)
$$\frac{5}{8}$$
 from $\frac{-3}{8}$
(ii) $\frac{8}{11}$ from $\frac{4}{11}$
(iii) $\frac{-9}{22}$ from $\frac{5}{33}$

Question 8: The sum of two rational numbers is $\frac{9}{20}$. If one of them is $\frac{2}{5}$, find the other.

Question 9: Which rational number should be added to $\frac{-7}{8}$ to get $\frac{5}{9}$?

Pg7/8

Question 10: What should be subtracted from -2 to get $\frac{3}{8}$?

Question 11: Evaluate

(i)
$$\frac{3}{7} + \frac{-4}{9} - \frac{-11}{7} - \frac{7}{9}$$

(ii) $\frac{4}{7} - \frac{-8}{9} - \frac{-13}{7} + \frac{17}{9}$

END.

Pg8/8