GIRLS' HIGH SCHOOL AND COLLEGE , PRAYAGRÀJ

Work sheet no-3
Session-2020-2021
Class 8-(A,B,C,D,E)
Subject- Mathematics. Chapter- Cubes and Cube-Roots.

INSTRUCTIONS: Parents kindly ensure that the student understands the given examples to solve the questions that follow. A Maths text book of (class7 or 8) can be referred by the student for better understanding. They can also refer to Internet.

Example 1: Cubes of odd natural numbers are odd, as $3^{3}=3 \times 3 \times 3=27$, Cube of even natural numbers are even, as $2^{3}=2 \times 2 \times 2=8$ and $6^{3}=6 \times 6 \times 6=216$

Q 1: List which of the following are cubes of even numbers and odd numbers?
i) 216
ii) 729
iii) 3375
iv) 8000
v) 125
vi)343
vii)4096
viii)9261.

Example 2: The cube of a number is called a perfect cube, as (i) $4^{3}=4 \times 4 \times 4=64$ is a perfect cube.(ii) $(1.2)^{3}=1.2 \times 1.2 \times 1.2=1.728$ is a perfect cube.

Q2: Find the cube of:
(i) 7
ii) 16
(iii) 23
(iv)31
(v) 2.1
(vi)0.4
(vii) 2.5
(viii)0.12

Example 3: Cube of fractional numbers $(2 / 7)=(2 / 7)^{3}=2 \times 2 \times 2 / 7 \times 7 \times \times 7=8 / 343$ numerator and denominator to be multiplied three times by the given number.

Q3: Find cubes of:
(i) $3 / 8$
(ii) $8 / 9$
(iii)10/13
(iv)1.2/1.3
(v) $17 / 8$

Example 4: Is 297 a perfect cube? Find prime factors of $297=3 \times 3 \times 3 \times 11$ since triplet of 11 is not formed therefore 297 is not a perfect cube.

Q4: Find which of the following are perfect cube?
(i) 243
(ii) 1331
(iii) 1728
(iv)24000.
(v)1938

Example 5: What is the smallest number by which 3087 maybe multiplied so that the product is a perfect cube.

Sol: Find prime factors of $3087=3 \times 3(7 \times 7 \times 7)$ one 3 is missing to make a triplet of 3 ,therefore 3087 should be multiplied by 3 , to make it a perfect cube.

Q5: (i) Find the least number by which 1323 must be multiplied so that the product is a perfect cube.

Page $\mathbf{2}$ of 4
(ii). Find the smallest number that must be multiplied to 77175 to make it a perfect cube.

Example 6: How to make the quotient of a number a perfect cube? By what least number 6750 may be divided so that the quotient becomes a perfect cube?

Sol: On finding the prime factors of 6750 we get $6750=2 \times(3 \times 3 \times 3)(5 \times 5 \times 5)$ since 2 does not make a triplet thus the number is divided by 2 to make it a perfect cube. $(3 \times 3 \times 3)(5 \times 5 \times 5)=3 \times 5=(15)^{3}$

Q6: (i) By what least number must 8640 be divided to make it a perfect cube ? (ii)Find the smallest number by which 26244 should be divided so that the quotient is a perfect cube.

Example 7: Cube root of a negative perfect cube i.e. $\sqrt[3]{-1000}=\sqrt[3]{(-10 x-10 x-10)}=-10$.

Q7: Find cube roots of:
(i) -512
(ii) -1331
(iii) $-27 / 125$
(iv) -64/343

Example 8: Cube root of decimal numbers i.e $0.125=125 / 1000$. Find prime factors of the numerator and the denominator $(5 \times 5 \times 5 / 10 \times 10 \times 10)=5 / 10=0.5$

Q 8:Find the cube roots of:
Page 3 of 4
(i) 0.064
(ii) 0.512
(iv) -125×1000
(v) 2.744

Q9:Find the cube roots of:
(i) 729
(ii) 1728
(iii) 8000
(iv) 64×27
(v) 729×8000

Q10:Find cube roots of the following:
(i) $-27 / 343$
(ii) -64×-125
(iii) -216×1728
(iv) $700 \times 2 \times 49 \times 5$
(v) 250.047

Q11. Solve the following:-
(i) $(54)^{3}$
(ii) $(0.02)^{3}$
(iii) $(3 / 7)^{3}$
(iv) $(-30)^{3}$
(v) $\sqrt[3]{4096}$
(vi) $\sqrt[3]{-15.625}$
END.

