Girls' High School \&College, Prayagraj

Session: 2020-2021
SUBJECT: MATHS
CLASS : 6 (A,B,C,D,E,F)
WORKSHEET NO. 06

CHAPTER: Fundamental Concepts (Algebra)

NOTE: Parents ensure that the student takes a reference from the book of previous class or the internet. Following Links can be helpful in understanding the concepts :

https://youtu.be/e-ORvKIzBJs

https://youtu.be/T8XY wL9G1o

Algebra:

Algebra is a generalized form of arithmetic. In Arithmetic, we use numbers like $5,-8,0.64$ etc., each with a definite value, whereas in Algebra, we use letters $(a b, c, \ldots \ldots . . x, y, z)$ along with numbers. For example: $7 x, 3 x-2,5 a+b, 2 y-7 z$ and so on.

The letters used in Algebra are called variables or literal numbers or simply literals. They do not have a fixed value.

SIGNS AND SYMBOLS:

In Algebra, the signs are used in the same sense as they are used in Arithmetic.
Also, the following signs and symbols are frequently used in algebra, each with the same meaning in every branch of mathematics.

$=$	means	"is equal to"	\neq	means	"is not equal to"
$<$	means	"is less than"	$>$	means	"is greater than"
$\&$	means	"is not less than"	\ngtr	means	"is not greater than"
\therefore	means	"therefore"	\because	means	"because" or "since"
\sim	means	"difference between"	\Rightarrow	means	"implies that".

Writing a given statement in algebraic form:

\square Statement		Algebraic Form
(i) x subtracted from 8 is less than y		$8-x<y$
(ii) y divided by 5 equals 2		$\frac{y}{5}=2$
(iii) z increased by 2 x is 23		$z+2 x=23$
Conversely,		
Algebraic Form		Statement
(i) $x+y=3$		x plus y is equal to 3
	or	sum of x and y is equal to 3 .
(ii) $p-5=\mathrm{x}$		p minus 5 is equal to x
	or	p decreased by 5 is equal to x .
	or	p exceeds 5 by x
(iii) $5 x>7$		5 multiplied by x is greater than 7
	or	product of 5 and x is greater than 7
(iv) $\frac{8}{y}<3$		8 divided by y is less than 3 .

SOLVE THE FOLLOWING QUESTIONS :

1. Express each of the following statements in algebraic form:
a) The sum of 8 and x is equal to y.
b) z decreased by $3 x$ is equal to y.
c) 15 multiplied by m gives $3 n$.
d) The sum of x and y is less than 24 .
e) $8 y$ divided by x equal to $2 z$.
f) The sum of 2 and x is greater than y.
2. For each of the following algebraic expressions, write a suitable statement in words:
a) $3 x+8=15$
b) $2 y-x<12$
c) $5 \div z=5$
d) $(16+2 a)-x>25$
e) $2 x-3 y=16$

CONSTANTS AND VARIABLES:

There are two types of symbols in Algebra, namely constants and variables.

A symbol with a fixed numerical value in all situations is called a constant such as $5,20,456,-7, \frac{5}{3}, \frac{7}{9}$, etc.
whereas a symbol whose value changes with situation is called a variable such as $x, y, p, q, 5 x$, etc.

TERM:

A term is a constant or a variable or a product or a quotient of constants and variables. For example:
(i) 4 is a term, which is a constant
(ii) x is a term, which is a variable
(iii) 4 x is a term, which is the product of a constant and a variable.
(iv) $\frac{3}{y}$ is a term, which is the quotient of a constant and a variable.

A term is called a constant term if it does not contain any literal (variable).
Thus, each of $3,-20, \frac{5}{7},-\frac{4}{9}$, etc. is a constant term.

A term is called a constant term if it does not contain any literal (variable). Thus each of $3,-20,5 / 7,-4 / 9$, etc. is a constant term.

Like Terms:

The terms having the same literal coefficient are called like terms. They may differ only in their numeral coefficients. For example:
a) $x y, 5 x y,-4 x y$, etc. are like terms.
b) $-8 x^{2} y, 7 x^{2} y, 1.5 x^{2} y$, etc. are like terms.

Unlike Terms:

The terms that do not have the same literal coefficients are called unlike terms. For example:
a) $6 b, 6 a b, 6 b c$ are unlike terms.
b) $2 x y, 2 x^{2} y$ and $2 x y^{2}$ are unlike terms.

ALGEBRAIC EXPRESSIONS :

An algebraic expression is a collection of one or more terms which are separated from each other by the signs + (plus) and/or - (minus).

For example :

Algebraic expressions
(i) $5 x$
(ii) $8 x y^{2}$
(iii) $3 x+8 z$
(iv) $4 x-y+7$
(v) $7 x y+\frac{2 a}{y}-3 z+8$

Number of terms used
1
1
2
3
4

$$
\begin{aligned}
& \text { Terms } \\
& 5 x \\
& 8 x y^{2} \\
& 3 x \text { and } 8 z \\
& 4 x, y \text { and } 7 \\
& 7 x y, \frac{2 a}{y}, 3 z \text { and } 8 \\
& \text { and so on. }
\end{aligned}
$$

In the algebraic expression $4 x-y+7,7$ is the constant term as it does not contain a literal. Similarly, in the algebraic expression $7 x y+\frac{2 a}{y}-3 z+8 ; 8$ is the constant term.

TYPES OF ALGEBRAIC EXPRESSIONS :

1) Monomial :

An algebraic expression with only one term is called a
Monomial. For Example: $-8, z, x y, 2 x, \frac{3 x}{5 y}$ etc.

2) Binomial :

An algebraic expression of two unlike terms is called a Binomial. For example: $5 x+2 y, 7-x, y+z y, 2 a+\frac{b}{2}, \frac{a}{3}-\frac{b}{3}$, etc.

3) Trinomial :

An algebraic expression containing three unlike terms is called a Trinomial. For example: $a x^{2}+b x+c, 2 x^{2}-7 x+4$, etc.
4) Multinomial :

An algebraic expression with two or more than two terms is called a Multinomial. For example:
Each of $3 x+2,5-x, a^{2}-7 x$ is a multinomial of two terms.
$7+x-x y+y 2$ is a multinomial of four terms and so on.
5) Polynomial:

An algebraic expression with one or more (unlike) terms is called Polynomial.

For example :

(i) Each of $-20,8, x, 5 x, 3 x y^{2}$, etc., is a polynomial.
(ii) $3 x+2 y$ is a polynomial of two terms.
(iii) $\mathrm{x}+4 \mathrm{yz}-7 \mathrm{z}+8$ is a polynomial of four terms.
(iv) Every monomial, every binomial, every trinomial and every multinomial is a polynomial.

For each literal used in a polynomial, its power must always be a whole number.
(v) A polynomial can not be of the form : $\frac{1}{x}, \frac{3}{x+5}, \frac{2 x}{x-5}, \frac{5}{x^{2}}, \frac{7 x}{x^{2}+8}, x^{2 / 3}$, $x^{1 / 2}$, etc.

Terms are separated by plus $(+)$ and minus (-) signs only.
The signs of multiplication (x) and division (\div) do not separate terms.
Thus, $3 p+5 z-7 y$ has three terms, whereas $3 p \times 5 z-7 y$ has two terms only.
In the same way, $8-4 x+7 y+2 z$ has four terms, whereas $8 \times 4 x \times 7 y \div 2 z$ has only one term.

PRODUCTS AND FACTORS:

A product is the result of the multiplication of two or more constants or literals or of both. For example: $5 x y$ is the product of $5, x$ and y.

Each constant and each literal multiplied together to form a product is called factor of that product.

COEFFICIENT :

Any factor for group of factors of a product is known as the coefficient of the remaining factors.

For example: In the product 5axy,
5 is the coefficient of axy, $5 x$ is the coefficient of ay, $x y$ is the coefficient of 5 a, axy is the coefficient of 5 and so on.

If a factor is a numerical quantity it is called a numeral coefficient of the remaining factors, and if a factor involves letters, it is called a literal coefficient of the remaining factors.

For example: In the product 3xy,
3 is a numeral coefficient of $x y, x$ is a literal coefficient of $3 y$, $x y$ is a literal coefficient of $3, y$ is literal coefficient of $3 x, 3 y$ is literal coefficient of x and so on.

When the coefficient is unity, i.e. 1 (one), it is usually omitted, i.e. $1 b$ is written as b.

POWER OF LITERAL QUANTITIES:

When a quantity is multiplied by itself any number of times, the product is called a power of that quantity. This product is expressed by writing the number of like factors in it to the right of the quantity slightly raised.

For example :

$a \times a$ has 2 like factors, so to express it as : $a \times a=a^{2}$
Similarly, (i) $a \times a \times a$ has 3 like factors, so we write: $a \times a \times a=a^{3}$.
(ii) $a \times a \times a \times a \times a$ has 5 like factors, so we write : $a \times a \times a \times a \times a=a^{5}$.

The following table will make the concept, more clear :

Product	Write as :	Read as :
(i) $a \times a$	a^{2}	a squared or a raised to the power 2.
(ii) $a \times a \times a$	a^{3}	a cubed or a raised to the power 3.
(iii) $m \times m \times m \times m \times m$	m^{5}	m raised to the power 5 or fifth power of m.

In $\mathbf{a}^{8}, \boldsymbol{a}$ is called the base and $\mathbf{8}$ is called the exponent or the index or the power.
Similarly, in $\mathbf{x}^{5}, \mathbf{x}$ is the base and $\mathbf{5}$ is the exponent or the index or the power and so on.

1. For all values of $x, x^{1}=x$ i.e. $5^{1}=5,8^{1}=8,35^{1}=35$ and so on
2. For all values of $x, x^{0}=1$ i.e. $5^{0}=1,8^{0}=1,35^{\circ}=1$ and so on

Example 1 :

Write each of the following products in index form :
(i) $m \times m \times n \times n \times n \times n$
(ii) $3 \times b \times b \times b \times b \times p \times p \times p$

Solution :

(i) $m \times m \times n \times n \times n \times n=m^{2} n^{4}$
(ii) $3 \times b \times b \times b \times b \times p \times p \times p=3 b^{4} p^{3}$

Example 2 :

Write each of the following in product form :
(i) $3 p^{4}$
(ii) $7 b^{2} q^{3}$
(iii) $a^{3} m^{4} n^{2}$

Solution :

(i) $3 \mathrm{p}^{4}=3 \times \mathrm{p} \times \mathrm{p} \times \mathrm{p} \times \mathrm{p}$
(ii) $7 \mathrm{~b}^{2} \mathrm{q}^{3}=7 \times b \times b \times q \times q \times q$
(iii) $a^{3} m^{4} n^{2}=\mathbf{a} \times \mathbf{a} \times \mathbf{a} \times \mathbf{m} \times m \times m \times m \times n \times n$

POLYNOMIAL IN ONE VARIABLE AND ITS DEGREE:

When an algebraic expression is made of one variable only, it is called a polynomial in one variable.

For example :
(i) $3+5 x-7 x^{2}$ is a polynomial in variable x.
(ii) $9 y^{3}-5 y^{2}+8$ is a polynomial in variable y.

The degree of a polynomial in one variable is the greatest of the exponents (powers) of its various terms. For example :

1. For polynomial $4 x^{2}-3 x^{5}+8 x^{6}$
(i) the exponent of the term $4 x^{2}=2$,
(ii) the exponent of the term $3 x^{5}=5$ and
(iii) the exponent of the term $8 x^{6}=6$.

Since the greatest exponent is 6

\therefore The degree of the polynomial $4 x^{2}-3 x^{5}+8 x^{6}=6$
2. The degree of the polynomial $25-x^{4}$ is 4 .
3. The degree of the polynomial $5 x-3$ is $\mathbf{1}$.

4. The degree of the polynomial $4 x^{3}-15 x^{5}-7 x^{8}$ is 8 and so on.

Polynomials of two or more variables and their degree

For example :
(i) $3 x+x y^{2}-8 y z$ is a polynomial made of three variables, x, y and z.
(ii) $5 y^{3}-3 y^{2} x+8 x^{2} y^{2}-3 x^{5}$ is a polynomial of two variables, x and y.

In order to find the degrees of such polynomials, find:
(a) The sum of the powers of all the variables used in each term of a given polynomial.
(b) The greatest of these sum is the degree of the given polynomial.

For example :
For polynomial $3 x+x y^{2}-8 y z$
The terms used are $3 x, x y^{2}$ and $8 y z$
Since the sum of the powers of the variables in $3 x$ used $=1,\left[3 x=3 x^{1}\right]$ the sum of the powers of the variables in $x y^{2}=1+2=3$
and the sum of the powers of the variables used in $8 y z=1+1=2$
Clearly, degree of the given polynomial $=3$
Page No. 8/10

SOLVE THE FOLLOWING QUESTIONS:

1. Separate the constants and the variables from each of the following:
7, $5 x,-7 y, \frac{5}{3}, \frac{4}{5} x y, a z, 8 p, 0,-\frac{x z}{3 y}$
2. Group the like terms together:
(i) $4 x,-3 y,-x, \frac{2}{3} x, \frac{4}{5 y}$, and y
(ii) $-a b^{2}, b^{2} a^{2}, 7 b^{2} a,-3 a^{2} b^{2}$ and $2 a b^{2}$
3. State whether true or false:
(i) 15 is a constant and x is a variable, but $15 x$ is variable.
(ii) $16 x$ has two terms 16 and x.
(iii) $8+\mathrm{ab}$ is a binomial.
(iv) The coefficient of y in $-4 x y$ is -4 .
(v) The expression $2 x^{2}+x$ is a trinomial.
4. State the number of terms in each of the following expressions:
(i) $2 \mathrm{a}-\mathrm{b}$
(ii) $3 x-\frac{x}{p}$
(iii) $2 x+y+8 \div y$
(iv) $x y \div 2$
5. State whether true or false:
(i) $x y$ and $-y x$ are like terms.
(ii) - ba and 2 ab are unlike terms.
(iii) 5 and $5 x$ are like terms.
(iv) a and -a are like terms.
6. For each expression given below, state whether it is monomial, or a binomial or a trinomial:
(i) $x y$
(ii) $2 x \div y$
(iii) $1+x+y$
(iv) $a x^{2}-x+5$

SOLVE THE FOLLOWING QUESTIONS:

1. Write down the coefficient of X in the following monomial:
(i) x
(ii) $-x$
(iii) - $5 a x$
(iv) $\frac{3}{2} x y$
2. Write the coefficients of:
(i) x in $3 x y^{2}$
(ii) y in $-y$
(iii) ax in $-a x y^{2}$
(iv) $x y^{2}$ in $5 a x y^{2}$
3. State the numeral coefficient of the following monomials:
(i) $4 x y$
(ii) abc
(iii) $-\frac{2 x}{y}$
(iv) $-7 x \div y$
4. Write the degree of each of the following:
(i) $x+x^{2}$
(ii) $5 x^{2}-7 x+2$
(iii) $x^{3}-x^{8}+x^{10}$
(iv) $1-100 x^{2}$
(v) $8 z^{3}-8 y^{2} z^{3}+7 y z^{5}$
