Girls' High School &College, Prayagraj Session: 2020 - 2021 SUBJECT: MATHS CLASS : 6 (A,B,C,D,E,F) WORKSHEET NO. 06

CHAPTER: Fundamental Concepts (Algebra)

NOTE: Parents ensure that the student takes a reference from the book of previous class or the internet. Following Links can be helpful in understanding the concepts :

https://youtu.be/e-ORvKIzBJs

https://youtu.be/T8XY_wL9G1o

Algebra:

Algebra is a generalized form of arithmetic. In Arithmetic, we use numbers like 5, -8, 0.64 etc., each with a definite value, whereas in Algebra, we use letters (ab,c,...,x,y,z) along with numbers. For example: 7x, 3x - 2, 5a+b, 2y-7z and so on.

The letters used in Algebra are called **variables** or **literal numbers** or simply **literals**. They do not have a fixed value.

SIGNS AND SYMBOLS:

In Algebra, the signs are used in the same sense as they are used in Arithmetic.

Also the same	, the follow meaning ir	ving <i>signs and symbols</i> and every branch of mathem	are <i>fre</i> natics.	equently use	ed in algebra, each with
=	means	"is equal to"	≠	means	"is not equal to"
<	means	"is less than"	>	means	"is greater than"
*	means	"is not less than"	≯	means	"is not greater than"
	means	"therefore"	\cdot	means	"because" or "since"
~	means	"difference between"	⇒	means	"implies that".

Page No. 1/10

Writing a given statement in algebraic form:

	Statement x subtracted from 8 is less than y y divided by 5 equals 2 z increased by 2x is 23		Algebraic Form 8 - x < y $\frac{y}{5} = 2$ z + 2x = 23
Convers	sely,		
	Algebraic Form		Statement
(i)	x + y = 3	or	x plus y is equal to 3 sum of x and y is equal to 3.
(ii)	p-5=x	or or	p minus 5 is equal to x p decreased by 5 is equal to x. p exceeds 5 by x
(iii)	5x > 7	or	5 multiplied by x is greater than 7 product of 5 and x is greater than 7
(iv)	$\frac{8}{y} < 3$		8 divided by y is less than 3.

SOLVE THE FOLLOWING QUESTIONS :

1. Express each of the following statements in algebraic form:

- a) The sum of 8 and x is equal to y.
- b) z decreased by 3x is equal to y.
- c) 15 multiplied by m gives 3n.
- d) The sum of x and y is less than 24.
- e) 8y divided by x equal to 2z.
- f) The sum of 2 and x is greater than y.

2. For each of the following algebraic expressions, write a suitable statement in words:

- a) 3x+8=15
- b) 2y-x<12
- c) 5÷z=5
- d) (16+2a)-x>25
- e) 2x-3y=16

CONSTANTS AND VARIABLES:

There are two types of symbols in Algebra, namely **constants** and **variables**.

A symbol with a fixed numerical value in all situations is called a **constant** such as 5, 20, 456, -7, $\frac{5}{3}$, $\frac{7}{9}$, etc.

whereas a symbol whose value changes with situation is called a **variable** such as x, y, p, q, 5x, etc.

TERM:

A term is a constant or a variable or a product or a quotient of

constants and variables. For example:

- (i) 4 is a term, which is a constant
- (ii) x is a term, which is a variable
- (iii) 4x is a term, which is the product of a constant and a variable.
- (iv) $\frac{3}{v}$ is a term, which is the quotient of a constant and a variable.

A term is called a **constant term** if it does not contain any literal (variable). Thus, each of 3, -20, $\frac{5}{7}$, $-\frac{4}{9}$, etc. is a constant term.

A term is called a **constant term** if it does not contain any literal (variable). Thus each of 3, -20, 5/7, -4/9, etc. is a constant term.

Like Terms:

The terms having the same literal coefficient are called **like terms**. They may differ only in their numeral coefficients. For example:

- a) xy, 5xy, -4xy, etc. are like terms.
- b) $-8x^2y$, $7x^2y$, $1.5x^2y$, etc. are like terms.

Unlike Terms:

The terms that do not have the same literal coefficients are called **unlike terms**. For example:

- a) 6b, 6ab, 6bc are unlike terms.
- b) 2xy, 2x²y and 2xy² are unlike terms.

ALGEBRAIC EXPRESSIONS :

An algebraic expression is a collection of one or more terms which are separated from each other by the signs + (plus) and/or – (minus).

Algebraic expressions	Number of terms used	Terms
(i) 5x	1	5x
(ii) 8xy ²	1	8xy ²
(iii) 3x + 8z	2	3x and 8z
(iv) $4x - y + 7$	3	4x, y and 7
(v) $7xy + \frac{2a}{y} - 3z + 8$	4	7xy, $\frac{2a}{y}$, 3z and 8
,		and so on.
In the algebraic expression 4x -	y + 7, 7 is the constant term as it	does not contain a literal.
	sion 7xy + $\frac{2a}{y}$ - 3z + 8; 8 is the	

TYPES OF ALGEBRAIC EXPRESSIONS :

1) Monomial :

An algebraic expression with only one term is called a

Monomial. For Example: -8, z, xy, 2x, $\frac{3x}{5y}$ etc.

2) Binomial :

An algebraic expression of two unlike terms is called a Binomial. For example: 5x+2y, 7-x, y+zy, $2a + \frac{b}{2}$, $\frac{a}{3} - \frac{b}{3}$, etc.

Page No. 4/10

3) Trinomial :

An algebraic expression containing three unlike terms is called a Trinomial. For example: ax^2+bx+c , $2x^2-7x+4$, etc.

4) Multinomial :

An algebraic expression with two or more than two terms is called a Multinomial. For example:

Each of 3x+2, 5-x, a^2-7x is a multinomial of two terms. 7+x-xy+y2 is a multinomial of four terms and so on.

5) Polynomial:

An algebraic expression with one or more (unlike) terms is called Polynomial.

For example :

- (i) Each of -20, 8, x, 5x, 3xy², etc., is a polynomial.
- (ii) 3x + 2y is a polynomial of two terms.
- (iii) x + 4yz 7z + 8 is a polynomial of four terms.
- (iv) Every monomial, every binomial, every trinomial and every multinomial is a polynomial.

For each literal used in a polynomial, its power must always be a whole number.

(v) A polynomial can not be of the form : $\frac{1}{x}$, $\frac{3}{x+5}$, $\frac{2x}{x-5}$, $\frac{5}{x^2}$, $\frac{7x}{x^2+8}$, $\frac{x^2}{x^3}$, $\frac{x^2}{x^2+8}$, $\frac{x^2}{x^3}$, $\frac{3}{x^2+8}$,

Terms are separated by plus (+) and minus (-) signs only. The signs of multiplication (×) and division (\div) do not separate terms. Thus, 3p + 5z - 7y has three terms, whereas $3p \times 5z - 7y$ has two terms only. In the same way, 8 - 4x + 7y + 2z has four terms, whereas $8 \times 4x \times 7y \div 2z$ has only one term.

PRODUCTS AND FACTORS:

A **product** is the result of the multiplication of two or more constants or literals or of both. For example: 5xy is the product of 5, x and y.

Each constant and each literal multiplied together to form a product is called **factor** of that product.

COEFFICIENT:

Any factor for group of factors of a product is known as the **coefficient** of the remaining factors.

For example: In the product 5axy,

5 is the coefficient of axy, 5x is the coefficient of ay, xy is the coefficient of 5a, axy is the coefficient of 5 and so on.

If a factor is a numerical quantity it is called a **numeral coefficient** of the remaining factors, and if a factor involves letters, it is called a **literal coefficient** of the remaining factors.

For example: In the product 3xy,

3 is a numeral coefficient of xy, x is a literal coefficient of 3y, xy is a literal coefficient of 3, y is literal coefficient of 3x, 3y is literal coefficient of x and so on.

When the coefficient is unity, i.e. 1 (one), it is usually omitted, i.e. 1b is written as b.

POWER OF LITERAL QUANTITIES:

When a quantity is multiplied by itself any number of times, the product is called a power of that quantity. This product is expressed by writing the number of like factors in it to the right of the quantity slightly raised.

For example :

a \times a has 2 like factors, so to express it as : a \times a = a²

Similarly, (i) $a \times a \times a$ has 3 like factors, so we write : $a \times a \times a = a^3$. (ii) $a \times a \times a \times a \times a$ has 5 like factors, so we write : $a \times a \times a \times a \times a = a^5$.

The following table will make the concept, more clear :

	Product	Write as :	Read as :
(i)	a×a	a ²	a squared
			or a raised to the power 2.
(ii)	a×a×a	a ³	a cubed
			or a raised to the power 3.
(iii)	$m \times m \times m \times m \times m$	m ⁵	m raised to the power 5
			or fifth power of m.

In a⁸, *a* is called the **base** and **8** is called the **exponent** or the **index** or the **power**. Similarly, in x⁵, **x** is the **base** and **5** is the **exponent** or the **index** or the **power** and so on.

1.	For all values of x, $x^1 = x$	i.e.	$5^1 = 5, 8^1 = 8, 35^1 = 35$	and so on
2.	For all values of x, $x^0 = 1$	i.e.	$5^0 = 1, 8^0 = 1, 35^0 = 1$	and so on

Example 1 :				
Write ea	ich of the following products	in index form :		
(i) m ×	$m \times n \times n \times n \times n$	(ii) $3 \times b \times b \times b \times b$	×p×p×p	
Solution :				
(i) m ×	$\mathbf{m} \times \mathbf{n} \times \mathbf{n} \times \mathbf{n} \times \mathbf{n} = \mathbf{m}^2 \mathbf{n}^4$			(Ans.)
(ii) 3 ×	$b \times b \times b \times b \times p \times p \times p =$	3b ⁴ p ³		(Ans.)
Example 2 :				
Write eac	ch of the following in produ	uct form :		
(i) 3p ⁴	(ii) 7b ²	² q ³ (iii)	a ³ m ⁴ n ²	
Solution :				
(i) 3p ⁴ =	= 3 × р × р × р × р			(Ans.)
(ii) 7b ² q	$^{3} = 7 \times b \times b \times q \times q \times q$			(Ans.)
(iii) a ³ m ⁴	$n^2 = a \times a \times a \times m \times m \times m \times r$	n × m × n × n		(Ans.)

Page No. 7/10

POLYNOMIAL IN ONE VARIABLE AND ITS DEGREE:

When an **algebraic expression** is **made of one variable** only, it is called a **polynomial in one variable**.

For example :

- (i) $3 + 5x 7x^2$ is a polynomial in variable x.
- (ii) $9y^3 5y^2 + 8$ is a polynomial in variable y.

The degree of a polynomial in one variable is the greatest of the exponents (powers) of its various terms.

For example :

- 1. For polynomial $4x^2 3x^5 + 8x^6$
 - (i) the exponent of the term $4x^2 = 2$,
 - (ii) the exponent of the term $3x^5 = 5$ and
 - (iii) the exponent of the term $8x^6 = 6$. Since the greatest exponent is 6
 - :. The degree of the polynomial $4x^2 3x^5 + 8x^6 = 6$
- 2. The degree of the polynomial 25 x⁴ is 4.
- 3. The degree of the polynomial 5x 3 is 1.
- 4. The degree of the polynomial $4x^3 15x^5 7x^8$ is 8

Polynomials of two or more variables and their degree

For example :

(i) $3x + xy^2 - 8yz$ is a polynomial made of three variables, x, y and z.

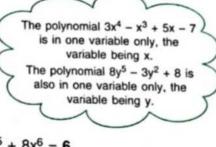
(ii) $5y^3 - 3y^2x + 8x^2y^2 - 3x^5$ is a polynomial of two variables, x and y.

In order to find the degrees of such polynomials, find :

- (a) The sum of the powers of all the variables used in each term of a given polynomial.
- (b) The greatest of these sum is the degree of the given polynomial.

For example :

For polynomial 3x + xy² – 8yz


The terms used are 3x, xy² and 8yz

- Since the sum of the powers of the variables in 3x used = 1, $[3x = 3x^{1}]$
 - the sum of the powers of the variables in $xy^2 = 1 + 2 = 3$

and the sum of the powers of the variables used in 8yz = 1 + 1 = 2

Clearly, degree of the given polynomial = 3

Page No. 8/10

and so on.

 $\therefore \mathbf{X} = \mathbf{X}^1$

SOLVE THE FOLLOWING QUESTIONS :

1. Separate the constants and the variables from each of the following:

7, 5x, -7y, $\frac{5}{3}$, $\frac{4}{5}$ xy, az, 8p, 0, $-\frac{xz}{3y}$

2. Group the like terms together:

(i) $4x, -3y, -x, \frac{2}{3}x, \frac{4}{5y}$, and y (ii) $-ab^2$, b^2a^2 , $7b^2a$, $-3a^2b^2$ and $2ab^2$

3. State whether true or false:

- (i) 15 is a constant and x is a variable, but 15x is variable.
- (ii) 16x has two terms 16 and x.
- (iii) 8 + ab is a binomial.
- (iv) The coefficient of y in -4xy is -4.
- (v) The expression $2x^2+x$ is a trinomial.

4. State the number of terms in each of the following expressions:

(i) 2a-b (ii) $3x - \frac{x}{p}$ (iii) 2x+y+8+y (iv) xy + 2

5. State whether true or false:

- (i) xy and -yx are like terms.
- (ii) -ba and 2ab are unlike terms.
- (iii) 5 and 5x are like terms.
- (iv) a and -a are like terms.
- 6. For each expression given below, state whether it is monomial, or a binomial or a trinomial:

(i) xy (ii)
$$2x \div y$$
 (iii) $1 + x + y$ (iv) $ax^2 - x + 5$

SOLVE THE FOLLOWING QUESTIONS :

1. Write down the coefficient of X in the following monomial:

(i) x (ii) - x (iii) - 5ax (iv) $\frac{3}{2}$ xy

- 2. Write the coefficients of:
 - (i) x in 3xy²
 (ii) y in y
 (iii) ax in -axy²
 (iv) xy² in 5axy²

3. State the numeral coefficient of the following monomials:

(i) 4xy (ii) abc (iii) $-\frac{2x}{y}$ (iv) $-7x \div y$

4. Write the degree of each of the following:

(i)
$$x + x^{2}$$

(ii) $5x^{2} - 7x + 2$
(iii) $x^{3} - x^{8} + x^{10}$
(iv) $1 - 100x^{2}$
(v) $8z^{3} - 8y^{2}z^{3} + 7yz^{5}$

END

Page No. 10/10