Girls' High School \& College, Prayagraj Worksheet -7
 Session-2020-2021
 Class-8 (A, B, C, D, E)
 Subject - Mathematics
 Topic: Rational numbers (PART-II)

Instructions: Parents please ensure that the student spends enough time to understand the given examples before solving the questions that follow. They can refer to a text book of maths (class-8) for the given topic. They can also refer to internet for clear concept of the topic.

Multiplication of Rational numbers:

Properties 1 and 2

Closure property:

1. If any two rational numbers are multiplied together, the result is always a rational number.
Example:Multiplication of $\frac{3}{4}$ and $\frac{5}{6}=\frac{3}{4} \times \frac{5}{6}=\frac{3 \times 5}{4 \times 6}=\frac{5}{8}$ is a rational number.
Multiplication of $-\frac{3}{8}$ and $\frac{5}{12}=-\frac{3 \times 5}{8 \times 12}=\frac{-5}{32}$
2. Commutative property:

According to commutative property of multiplication, if $\frac{a}{b}$ and $\frac{c}{d}$ are two rational numbers then $\frac{a}{b} \times \frac{c}{d}=\frac{c}{d} \times \frac{a}{b}$
Example: Consider the rational numbers $-\frac{7}{12}$ and $\frac{5}{8}=-\frac{7}{12} \times \frac{5}{8}=-\frac{35}{96}$ OR $\frac{5}{8} \times \frac{-7}{12}=\frac{-35}{96}$

Question 1.

Evaluate:

1. $-\frac{14}{5} \times \frac{-6}{2}$
2. $\frac{7}{6} \times \frac{-18}{91}$
3. $-\frac{125}{72} \times \frac{9}{-5}$
4. $\frac{-11}{9} \times \frac{-51}{-44}$
5. $\frac{-16}{5} \times \frac{20}{8}$

Question 2: Multiply

1. $\frac{5}{6}$ and $\frac{8}{9}$
2. $\frac{2}{7}$ and $\frac{-14}{9}$
3. $\frac{-7}{8}$ and 4
4. $\frac{36}{-7}$ and $\frac{-9}{28}$
5. $\frac{3}{-2}$ and $\frac{-7}{3}$
6. $\frac{-1}{5}$ and $\frac{2}{9}$
7. $\frac{5}{-4}$ and $\frac{13}{-11}$
8. 3 and $\frac{-8}{15}$
9. $\frac{-7}{10}$ and $\frac{-8}{15}$
10.34 and $\frac{-12}{17}$

Property 3:

Distributivity of multiplication over addition:
The multiplication of rational number is distributive over their addition / subtraction

Example

Consider any three numbers; $\frac{3}{4}, \frac{-4}{5}$ and $\frac{5}{6}$ then; $\frac{3}{4} \times\left[\frac{-4}{5}+\frac{5}{6}\right]=$

$$
\begin{aligned}
& \frac{3}{4} \times\left[\frac{-4 \times 6+5 \times 5}{30}\right] \\
= & \frac{3}{4} \times\left(\frac{-24+25}{30}\right)=\frac{3}{4} \times \frac{1}{30}=\frac{3 \times 1}{4 \times 30}=\frac{1}{40}
\end{aligned}
$$

OR

$$
\frac{3}{4} \times \frac{-4}{5}+\frac{3}{4} \times \frac{5}{6}=\frac{3 \times-4}{4 \times 5}+\frac{3 \times 5}{4 \times 6}=\frac{-3}{5}+\frac{5}{8}=\frac{-3 \times 8+5 \times 5}{40}=\frac{-24+25}{40}=\frac{1}{40}
$$

Question 3:

Evaluate:

1. $\left[\frac{2}{-3} \times \frac{5}{4}\right]+\left[\frac{5}{9} \times \frac{3}{-10}\right]$
2. $\left[2 \times \frac{1}{4}\right]-\left[\frac{-18}{7} \times \frac{-7}{15}\right]$
3. $\left[-5 \times \frac{2}{15}\right]-\left[-6 \times \frac{2}{9}\right]$
4. $\left[\frac{8}{5} \times \frac{-3}{2}\right]+\left[\frac{-3}{10} \times \frac{9}{16}\right]$

Property 4.

Multiplicative identity for rational numbers is one (1)
Example $\quad \frac{5}{7} \times 1=1 \times \frac{5}{7}=\frac{5}{7}$
Question 4: Multiply each rational number by one (1)

1. $\frac{7}{-5}$
2. $\frac{-3}{-4}$
3. $\frac{-8}{13}$
4. $\frac{-6}{-7}$

Property 5: The reciprocal of a rational number is called its multiplicative inverse:

1. The multiplicative inverse of $\frac{3}{5}=$ the reciprocal of $\frac{3}{5}=\frac{5}{3}$
2. A rational number \times its multiplicative inverse $=1$

Example $\left[\frac{-5}{8}\right] \times\left[\frac{8}{-5}\right]=1$

$$
\left[\frac{7}{-8}\right] \times\left[\frac{-8}{7}\right]=1
$$

Question 5 (i): Write the reciprocal (multiplicative inverse) of each rational number given below:

1. 5
2. $\frac{-3}{4}$
3. $\frac{5}{11}$
4. $\frac{-7}{-8}$
5. $\frac{15}{-17}$

Question 5 (ii): Find reciprocal of:

1. $\frac{3}{5} \times \frac{2}{3}$
2. $\frac{-8}{3} \times \frac{13}{-7}$
3. $\frac{-3}{5} \times \frac{-1}{13}$

Question 6: Verify that: $(\mathrm{a}+\mathrm{b}) \times \mathrm{c}=(\mathrm{a} \times \mathrm{c}+\mathrm{b} \times \mathrm{c})$, if
i. $\quad \mathrm{a}=\frac{4}{5}, \mathrm{~b}=\frac{-2}{-3}$ and $\mathrm{c}=-4$
ii. $\quad a=2, b=\frac{4}{5}$, and $c=\frac{-3}{10}$

Question 7: Verify that $\mathrm{ax}(\mathrm{b}-\mathrm{c})=(\mathrm{a} \times \mathrm{b})-(\mathrm{a} \times \mathrm{c})$; if
i. $\quad \mathrm{a}=\frac{4}{5}, \mathrm{~b}=-\frac{7}{4}$ and $\mathrm{c}=3$
ii. $\quad \mathrm{a}=\frac{3}{4}, \mathrm{~b}=\frac{8}{9}$ and $\mathrm{c}=-5$

Question 8: Fill in the blanks:

1. The product of two positive rational numbers is always \qquad .
2. The product of two negative rational numbers is always \qquad .
3. Rational number 0 has \qquad reciprocal.
4. The product of rational number and its reciprocal is \qquad .
5. If m is reciprocal of n, then the reciprocal of n is \qquad .

The Division Of Rational Numbers:-

1. Closure property:- If a rational number is divided by some non - zero rational number, the result is always a rational number.
Example: $\frac{3}{4}$ and $\frac{5}{8}$ are two rational numbers. Since $\frac{5}{8} \neq 0$ then $\frac{3}{4} \div \frac{5}{8}$ is a rational number.
2. 0 and $\frac{5}{2}$ are two rational numbers and $\frac{5}{2} \neq 0$, then $0 \div \frac{5}{2}=0 \times \frac{2}{5}=0$ is a rational number.

Question 9 : Evaluate:

1. $1 \div \frac{1}{3}$
2. $3 \div \frac{3}{5}$
3. $0 \div\left(\frac{-4}{7}\right)$
4. $\frac{-3}{4} \div(-9)$
5. $\frac{8}{-5} \div \frac{24}{25}$
6. $\frac{3}{4} \div\left(\frac{-5}{12}\right)$
7. $-5 \div\left(\frac{-10}{11}\right)$
8. $\frac{-7}{11} \div\left(\frac{-3}{44}\right)$

Commutative property: Division of two different rational numbers is not commutative:

Example: If $\frac{a}{b}$ and $\frac{c}{d}$ are two non - zero rational numbers then $\frac{a}{b} \div \frac{c}{d} \neq \frac{c}{d} \div$ $\frac{\mathrm{a}}{\mathrm{b}}$

The same can be verified with any pair of rational number.

Question 10 Divide:

i. $\quad 3$ by $\frac{1}{3}$
ii. $\quad 0$ by $\frac{7}{-9}$
iii. 2 by $\left(\frac{-1}{2}\right)$
iv. $\frac{-5}{8}$ by $\frac{1}{4}$
v. $\frac{-3}{4}$ by $\frac{-9}{16}$

Associativity: Division of rational number is not associative:
i.e. if $\frac{a}{b}, \frac{c}{d}$ and $\frac{e}{f}$ are rational numbers such that $\frac{c}{d} \neq 0$ and $\frac{e}{f} \neq 0$
then $\frac{\mathrm{a}}{\mathrm{b}} \div\left(\frac{\mathrm{c}}{\mathrm{d}} \div \frac{e}{f}\right) \neq\left(\frac{a}{b} \div \frac{c}{d}\right) \div \frac{e}{f}$
Example: the product of two rational numbers is $=\frac{8}{9}$ and one of them is $-\frac{5}{6}$ the other number $=\frac{8}{9} \div\left(-\frac{5}{6}\right)$

$$
\begin{aligned}
& =\frac{8}{9} \times\left(-\frac{6}{5}\right)=-\frac{8 \times 6}{9 \times 5} \\
& =-\frac{8 \times 2}{3 \times 5}=-\frac{16}{15}
\end{aligned}
$$

Question 11:

1. The product of two rational number is -2 . If one of them is $\frac{4}{7}$, find the other.
2. m and n are two rational numbers such that $m \times n=-\frac{25}{9}$
(i) if $m=\frac{5}{3}$, find n.
(ii) if $n=-\frac{10}{9}$,find m.
3. By what number must $\frac{-3}{4}$ be multiplied so that the product is $-\frac{9}{16}$?

Inserting Of Rational Numbers Between:-

Method 1: If a and b are two rational numbers then $\frac{a+b}{2}$ is also a rational number and its value lies between a and b.

Example 1: Insert one rational number between 2 and 3
Solution: 2 and $3=2, \frac{2+3}{2}, 3=\frac{5}{2}=2.5$

$$
=2,2.5,3
$$

The required rational number is 2.5
Example 2: Insert two rational numbers between 7 and 8.
Solution: 7 and $8=7, \frac{7+8}{2}, 8$

$$
\begin{aligned}
& =7,7.5,8 . \\
& =7, \frac{7+7.5}{2}, 7.5,8 .
\end{aligned}
$$

The required rational numbers are 7.25, 7.5
Example 3: insert three rational numbers between 3 and 4 .
Solution: $3, \frac{3+4}{2}$, 4

$$
\begin{aligned}
& =3,3.5,4 . \\
& =3, \frac{3+3.5}{2}, 3.5, \frac{3.5+4}{2}, 4 \\
& =3,3.25,3.5,3.75,4 .
\end{aligned}
$$

The required rational numbers between 3 and 4 are $=3.25,3.5,3.75$
Example 4: Insert five rational numbers $\frac{3}{4}$ and $\frac{7}{8}$
Step 1: Find L.C.M of 4 and $8=8$
Make denominator of $\frac{3}{4}=\frac{3 \times 2}{4 \times 2}=\frac{6}{8}$ and $\frac{7}{8}=\frac{7}{8}$
Step 2: Since five rational numbers are required, multiply the numerator and the denominator of each rational number (obtained in step 1) by $5+1=6$
$\therefore \frac{6 \times 6}{8 \times 6}=\frac{36}{48}$ similarly $\frac{7 \times 6}{8 \times 6}=\frac{42}{48}$
Required rational numbers between $\frac{3}{4}$ and $\frac{7}{8}$ i.e. $\frac{36}{48}$ and $\frac{42}{48}$
$=\frac{37}{48}, \frac{38}{48}, \frac{39}{48}, \frac{40}{48}, \frac{41}{48}$

Question 12:

(i) Insert one rational number between:

1. 2 and 3.2
2. 7 and 8
(ii)Insert two rational numbers between :
3. 6 and 7
4. 4.8 and 6
(iii) Insert three rational numbers between:
5. 3 and 4
6. 10 and 12
(iv)Insert five rational numbers between $\frac{3}{5}$ and $\frac{2}{3}$
(v)Insert six rational numbers between $\frac{5}{6}$ and $\frac{8}{9}$
******END ${ }^{* * * * *}$
