Girls' High School & College, Prayagraj Worksheet -7 Session-2020-2021 Class-8 (A, B, C, D, E) Subject – Mathematics Topic: Rational numbers (PART-II)

Instructions: Parents please ensure that the student spends enough time to understand the given examples before solving the questions that follow. They can refer to a text book of maths (class-8) for the given topic. They can also refer to internet for clear concept of the topic.

Multiplication of Rational numbers:

Properties 1 and 2

Closure property:

1. If any two rational numbers are multiplied together, the result is always a rational number.

Example: Multiplication of $\frac{3}{4}$ and $\frac{5}{6} = \frac{3}{4} \times \frac{5}{6} = \frac{3 \times 5}{4 \times 6} = \frac{5}{8}$ is a rational number.

Multiplication of $-\frac{3}{8}$ and $\frac{5}{12} = -\frac{3 \times 5}{8 \times 12} = \frac{-5}{32}$

2. Commutative property:

According to commutative property of multiplication, if $\frac{a}{b}$ and $\frac{c}{d}$ are two rational numbers then $\frac{a}{b} \times \frac{c}{d} = \frac{c}{d} \times \frac{a}{b}$ Example: Consider the rational numbers $-\frac{7}{12}$ and $\frac{5}{8} = -\frac{7}{12} \times \frac{5}{8} = -\frac{35}{96}$ OR $\frac{5}{8} \times \frac{-7}{12} = \frac{-35}{96}$

Question 1.

Evaluate:

1.
$$-\frac{14}{5} \times \frac{-6}{2}$$

2. $\frac{7}{6} \times \frac{-18}{91}$
3. $-\frac{125}{72} \times \frac{9}{-5}$
4. $\frac{-11}{9} \times \frac{-51}{-44}$
5. $\frac{-16}{5} \times \frac{20}{8}$

Question 2: Multiply

1.
$$\frac{5}{6}$$
 and $\frac{8}{9}$
2. $\frac{2}{7}$ and $\frac{-14}{9}$
3. $\frac{-7}{8}$ and 4
4. $\frac{36}{-7}$ and $\frac{-9}{28}$
5. $\frac{3}{-2}$ and $\frac{-7}{3}$
6. $\frac{-1}{5}$ and $\frac{2}{9}$
7. $\frac{5}{-4}$ and $\frac{13}{-11}$
8. 3 and $\frac{-8}{15}$
9. $\frac{-7}{10}$ and $\frac{-8}{15}$
10. 34 and $\frac{-12}{17}$

Property 3:

Distributivity of multiplication over addition:

The multiplication of rational number is distributive over their addition / subtraction

Example

Consider any three numbers; $\frac{3}{4}$, $\frac{-4}{5}$ and $\frac{5}{6}$ then; $\frac{3}{4} \times [\frac{-4}{5} + \frac{5}{6}] =$

$$\frac{3}{4} \times \left[\frac{-4 \times 6 + 5 \times 5}{30}\right]$$
$$=\frac{3}{4} \times \left(\frac{-24 + 25}{30}\right) = \frac{3}{4} \times \frac{1}{30} = \frac{3 \times 1}{4 \times 30} = \frac{1}{40}$$

OR

$$\frac{3}{4} \times \frac{-4}{5} + \frac{3}{4} \times \frac{5}{6} = \frac{3 \times -4}{4 \times 5} + \frac{3 \times 5}{4 \times 6} = \frac{-3}{5} + \frac{5}{8} = \frac{-3 \times 8 + 5 \times 5}{40} = \frac{-24 + 25}{40} = \frac{1}{40}$$

Question 3:

Evaluate:

1.
$$\left[\frac{2}{-3} \times \frac{5}{4}\right] + \left[\frac{5}{9} \times \frac{3}{-10}\right]$$

2. $\left[2 \times \frac{1}{4}\right] - \left[\frac{-18}{7} \times \frac{-7}{15}\right]$
3. $\left[-5 \times \frac{2}{15}\right] - \left[-6 \times \frac{2}{9}\right]$
4. $\left[\frac{8}{5} \times \frac{-3}{2}\right] + \left[\frac{-3}{10} \times \frac{9}{16}\right]$

Property 4.

Multiplicative identity for rational numbers is one (1)

Example $\frac{5}{7} \times 1 = 1 \times \frac{5}{7} = \frac{5}{7}$

Question 4: Multiply each rational number by one (1)

1.
$$\frac{7}{-5}$$

2. $\frac{-3}{-4}$
3. $\frac{-8}{13}$
4. $\frac{-6}{-7}$

Property 5: The reciprocal of a rational number is called its multiplicative inverse:

- 1. The multiplicative inverse of $\frac{3}{5}$ = the reciprocal of $\frac{3}{5} = \frac{5}{3}$
- 2. A rational number \times its multiplicative inverse = 1

Example
$$\left[\frac{-5}{8}\right] \times \left[\frac{8}{-5}\right] = 1$$

 $\left[\frac{7}{-8}\right] \times \left[\frac{-8}{7}\right] = 1$

Question 5 (i): Write the reciprocal (multiplicative inverse) of each rational number given below:

1. 5
2.
$$\frac{-3}{4}$$

3. $\frac{5}{11}$
4. $\frac{-7}{-8}$
5. $\frac{15}{-17}$

Question 5 (ii): Find reciprocal of:

1. $\frac{3}{5} \times \frac{2}{3}$ 2. $\frac{-8}{3} \times \frac{13}{-7}$

3.
$$\frac{-3}{5} \times \frac{-1}{13}$$

Question 6: Verify that: $(a + b) \times c = (a \times c + b \times c)$, if

i. $a = \frac{4}{5}$, $b = \frac{-2}{-3}$ and c = -4ii. a = 2, $b = \frac{4}{5}$, and $c = \frac{-3}{10}$

Question 7: Verify that $a \times (b-c) = (a \times b) - (a \times c)$; if

i. $a = \frac{4}{5}$, $b = -\frac{7}{4}$ and c = 3ii. $a = \frac{3}{4}$, $b = \frac{8}{9}$ and c = -5

Question 8: Fill in the blanks:

- 1. The product of two positive rational numbers is always _____.
- 2. The product of two negative rational numbers is always ______.
- 3. Rational number 0 has ______ reciprocal.
- 4. The product of rational number and its reciprocal is ______.
- 5. If m is reciprocal of n, then the reciprocal of n is_____.

The Division Of Rational Numbers:-

- 1. **Closure property**:- If a rational number is divided by some non zero rational number, the result is always a rational number. **Example:** $\frac{3}{4}$ and $\frac{5}{8}$ are two rational numbers. Since $\frac{5}{8} \neq 0$ then $\frac{3}{4} \div \frac{5}{8}$ is a rational number.
- 2. 0 and $\frac{5}{2}$ are two rational numbers and $\frac{5}{2} \neq 0$, then $0 \div \frac{5}{2} = 0 \times \frac{2}{5} = 0$ is a rational number.

Question 9 : Evaluate:

1.
$$1 \div \frac{1}{3}$$

2. $3 \div \frac{3}{5}$
3. $0 \div \left(\frac{-4}{7}\right)$
4. $\frac{-3}{4} \div \left(-9\right)$
5. $\frac{8}{-5} \div \frac{24}{25}$
6. $\frac{3}{4} \div \left(\frac{-5}{12}\right)$
7. $-5 \div \left(\frac{-10}{11}\right)$
8. $\frac{-7}{11} \div \left(\frac{-3}{44}\right)$

Commutative property: Division of two different rational numbers is not commutative:

Example: If $\frac{a}{b}$ and $\frac{c}{d}$ are two non – zero rational numbers then $\frac{a}{b} \div \frac{c}{d} \neq \frac{c}{d} \div \frac{a}{b}$

The same can be verified with any pair of rational number.

Question 10 Divide:

i.
$$3 \text{ by } \frac{1}{3}$$

ii. $0 \text{ by } \frac{7}{-9}$
iii. $2 \text{ by } (\frac{-1}{2})$
iv. $\frac{-5}{8} \text{ by } \frac{1}{4}$
v. $\frac{-3}{4} \text{ by } \frac{-9}{16}$

Associativity: Division of rational number is not associative:

i.e. if $\frac{a}{b}$, $\frac{c}{d}$ and $\frac{e}{f}$ are rational numbers such that $\frac{c}{d} \neq 0$ and $\frac{e}{f} \neq 0$

then $\frac{a}{b} \div (\frac{c}{d} \div \frac{e}{f}) \neq (\frac{a}{b} \div \frac{c}{d}) \div \frac{e}{f}$

Example: the product of two rational numbers is $=\frac{8}{9}$ and one of them is $-\frac{5}{6}$ the other number $=\frac{8}{9} \div (-\frac{5}{6})$

$$= \frac{8}{9} \times \left(-\frac{6}{5}\right) = -\frac{8 \times 6}{9 \times 5}$$
$$= -\frac{8 \times 2}{3 \times 5} = -\frac{16}{15}$$

Question 11:

- 1. The product of two rational number is -2. If one of them is $\frac{4}{7}$, find the other.
- 2. m and n are two rational numbers such that $m \times n = -\frac{25}{9}$

(i) if
$$m = \frac{5}{3}$$
, find n.

(ii) if
$$n = -\frac{10}{9}$$
, find m.

3. By what number must $\frac{-3}{4}$ be multiplied so that the product is $-\frac{9}{16}$?

Inserting Of Rational Numbers Between:-

Method 1: If a and b are two rational numbers then $\frac{a+b}{2}$ is also a rational number and its value lies between a and b.

Example 1: Insert one rational number between 2 and 3

Solution: 2 and 3 = 2,
$$\frac{2+3}{2}$$
, $3 = \frac{5}{2} = 2.5$
= 2, 2.5, 3

The required rational number is 2.5

Example 2: Insert two rational numbers between 7 and 8.

Solution: 7 and 8= 7, $\frac{7+8}{2}$, 8

$$= 7, 7.5, 8.$$
$$= 7, \frac{7+7.5}{2}, 7.5, 8.$$

The required rational numbers are 7.25, 7.5

Example 3: insert three rational numbers between 3 and 4.

Solution : 3,
$$\frac{3+4}{2}$$
, 4
= 3, 3.5, 4.
= 3, $\frac{3+3.5}{2}$, 3.5, $\frac{3.5+4}{2}$, 4
= 3, 3.25, 3.5, 3.75, 4.

The required rational numbers between 3 and 4 are = 3.25, 3.5, 3.75

Example 4: Insert five rational numbers $\frac{3}{4}$ and $\frac{7}{8}$

Step 1: Find L.C.M of 4 and 8 = 8

Make denominator of $\frac{3}{4} = \frac{3 \times 2}{4 \times 2} = \frac{6}{8}$ and $\frac{7}{8} = \frac{7}{8}$

Step 2: Since five rational numbers are required, multiply the numerator and the denominator of each rational number (obtained in step 1) by 5+1=6

 $\therefore \frac{6\times 6}{8\times 6} = \frac{36}{48} \text{ similarly } \frac{7\times 6}{8\times 6} = \frac{42}{48}$

Required rational numbers between $\frac{3}{4}$ and $\frac{7}{8}$ i.e. $\frac{36}{48}$ and $\frac{42}{48}$

 $=\frac{37}{48},\frac{38}{48},\frac{39}{48},\frac{40}{48},\frac{41}{48}$

Question 12:

(i) Insert one rational number between:

- 1. 2 and 3.2
- 2. 7 and 8

(ii)Insert two rational numbers between :

- 1. 6 and 7
- 2. 4.8 and 6

(iii) Insert three rational numbers between:

- 1. 3 and 4
- 2. 10 and 12

(iv)Insert five rational numbers between $\frac{3}{5}$ and $\frac{2}{3}$

(v)Insert six rational numbers between $\frac{5}{6}$ and $\frac{8}{9}$

******END*****