GIRLS'HIGH SCHOOL AND COLLEGE, PRAYAGRAJ

SESSION: 2020-2021

CLASS-X A, B, C, D, E, F

SUBJECT: PHYSICS PRACTICAL

INSTRUCTIONS: 1)Parents are expected to ensure that student must write all experiments in Guided Physics Practical Workbook (D.N. Publications).

- 2) Observations and reading will be done, when the school will re-open.
- 3) Well labelled diagram will be made on the left page only.
- 4) Each experiment should be written on a separate page.

EXPERIMENT No.1

AIM: To verify the principle of moments.

APPARATUS USED: Metallic stand, metre ruler, weights and string.

PRINCIPLE: In equilibrium, the sum of anticlockwise moments is equal to the sum of clockwise moments.

OBSERVATIONS AND CALCULATIONS: Position of centre of gravity of the metre ruler G = _____cm

Weight W1 = ____gf

Weight W2 = ____gf

Sl.No.	X (in cm from G)	Y (in cm from G)	W1×X (gf-cm)	W2 ×Y (gf-cm)
1				
2				
3				
4				

RESULT: Since $W1\times X = W2\times Y$ (approximately equal), it verify the principle of moments.

EXPERIMENT No.2

AIM: To determine the weight of the given metre ruler using principle of moments.

APPARATUS REQUIRED: Metre ruler, string, known weight, metallic stand.

PRINCIPLE: According to the principle of moments,

Under equilibrium conditions, the sum of all anticlockwise moments= the sum of all clockwise moments.

OBSERVATIONS AND CALCULATIONS:

Least count of the metre ruler= ____cm

Position of centre of gravity of the metre ruler=___cm

Known weight W1=___gf

Sl.No.	Distance of weight from suspension =X(cm)	Distance of suspension from center of gravity=Y(cm)	W=W1*(X/Y) (gf)
1			
2			
3			
4			

Average weight of the metre ruler= (....+....+....+....)/4 gf

RESULT: The weight of the given metre ruler as determined from the experiment=_____g.

EXPERIMENT No.3

AIM: To determine the unknown weight of a given bob using principle of moments.

APPARATUS USED: Metre ruler, metallic stand, string, known weight and unknown weight.

PRINCIPLE: According to the principle of moments,

Under equilibrium condition, the sum of all anticlockwise moments is equal the sum of all clockwise moments.

OBSERVATIONS AND CALCULATIONS:

Least count of the metre ruler=cm	
Known weight W1=gf	
Position of centre of gravity of the metre ruler (CG)=cr	n.

Sl.No.	Distance of known weight from CG=X(cm)	Distance of unknown weight from CG= Y (cm)	W=W1*(X/Y) (gf)
1			
2			
3			
4			

Tivelage weight (), I gi	Average weight=	(+++)/4 gf
--------------------------	-----------------	------	--------

RESULT: The unknown weight of the given bob as obtained from the above experiment=____gf.

EXPERIMENT No.4

AIM: To determine the relative density of brass bob using principle of moments.

APPARATUS USED: Metre ruler, metallic stand, string, known weight, brass bob and beaker filled with water.

THEORY: The relative density of the substance is defined as the ratio of its density to the density of water at 4 $^{\circ}$ C i.e. the ratio of mass of the substance to the mass of an equal volume of water or weight of substance to the weight of water displaced by the substance.

R.D.= weight of the substance/weight of water displaced by the substance

$$R.D.=W/(W-W')$$

where W= weight of the substance in air, and

W'= weight of substance in water.

Since **W= (W1*X1)/Y**

$$W' = (W1*X2)/Y$$

where **X1**= distance of known weight from the centre of gravity of metre ruler when metallic bob is in air,

X2 = distance of known weight from the centre of gravity of metre ruler when metallic bob is in water, and

Y= distance of metallic bob from the centre of gravity of metre ruler.

Thus, **R.D.= X1/(X1 - X2)**

OBSERVATIONS AND CALCULATIONS:

Least count of the metre ruler= ____cm

Known weight W1= ____gf

Position of centre of gravity of the metre ruler (CG)=____cm.

Sl. No.	Y (in cm)	X1(in	X2 (in	R.D.=
	cm)	cm)	cm)	X1/(X1 - X2)
1				
2				
3				
4				

RESULT: The relative density of brass bob from above experiment =_____

Page: 6/7

Page: 7/7