GIRLS' HIGH SCHOOL AND COLLEGE, PRAYAGRAJ Session 2020-21
 CLASS-X (A,B,C,D,E,F)
 SUBJECT-MATHEMATICS
 WORKSHEET NO. - 3

INSTRUCTIONS: - Parents are expected to ensure that the student spends two days to read and understand the chapter according to the books and websites given below.

NOTE - 1. Concise Mathematics ICSE Class X by R.K. Bansal
2. Understanding ICSE Mathematics Class X by M.L. Aggarwal
3. www.extramarks.com, www.topperlearning.com

Topic - Linear Inequations (In One Variable)

INTRODUCTION- If x and y are two quantities, then both of these quantities will satisfy any one of the following four conditions (relations) :

$$
\begin{array}{llll}
\text { i.e. either (i) } x>y & \text { (ii) } x \geq y & \text { (iii) } x<y & \text { or }
\end{array} \text { (iv) } x \leq y
$$

Each of the four conditions given above, is an inequation

Linear Inequation in one variable :

If a, b and c are real number, then each of the following is called a linear inequation in one variable :
(i) $a x+b>c$. Read as : $a x+b$ is greater than c
(ii) $a x+b<c$. Read as : $a x+b$ is less than c
(iii) $a x+b \geq c$. Read as : $a x+b$ is greater than or equal to c
(iv) $a x+b \leq c$. Read as : $a x+b$ is less than or equal to c

In an inequation the signs ' $<$ ', ' $>$ ' , ' \leq ', ' \geq ' are called signs of inequality

Solving a linear Inequation Algebraically :

The following working rules must be adopted for solving a given linear inequation :

Rule 1: On transferring a positive term from one side of an inequation to its other side, the sign of the term becomes negative.

$$
\begin{array}{r}
\text { eg : } 2 x+3>7 \\
2 x>7-3
\end{array}
$$

Rule 2: On transferring a negative term from one side of an inequation to its other side, the sign of the term becomes positive.

$$
\begin{array}{r}
\text { eg }: 5 x-4 \leq 15 \\
5 x \leq 15+4
\end{array}
$$

Rule 3: If each term of an inequation be multiplied or divided by the same positive number, the sign of inequality remains the same.

That is, if p is positive
eg $x<y \Rightarrow p x<p y$ and $\left[\frac{x}{p}\right]<\left[\frac{y}{p}\right]$
Rule 4: If each term of an inequation be multiplied or divided by the same negative number, the sign of inequality reverses.

That is, if p is negative
eg: $x<y \Rightarrow p x>p y$ and $\left[\frac{x}{p}\right]>\left[\frac{y}{p}\right]$
Rule 5: If sign of each term on both sides of an inequation is changed, the sign of inequality gets reversed.
eg: $-x>5 \Leftrightarrow x<-5$
Rule 6: If both the sides of an inequation are positive or both are negative, then on taking their reciprocals, the sign of inequality reverses.
ie: If x and y both are either positive or both are negative, then ie: $x>y \Leftrightarrow \frac{1}{x}<\frac{1}{y}$

REPLACEMENT SET AND SOLUTION SET

The set, from which the value of the variable x is to be chosen, is called replacement set and its subset, whose elements satisfy the given inequation, is called solution set.
eg : Let the given inequation be $x<3$, if :
the replacement set $=\mathrm{N}$, the set of natural numbers,
The solution set $=\{1,2\}$
But, if the replacement set is the set of real numbers, the solution set can only be described in set builder form, ie $\{x: x \in R$ and $x<3\}$

REPRESENTATION OF THE SOLUTION ON THE NUMBER LINE

A real number line can be used to represent the solution set of an inequation
For eg: The adjacent figure shows

$$
x<2 \text { and } x \in R
$$

The number 2 is encircled and the circle is not darkened to show that 2 is not included in the graph.

If 2 is also included ie $x \leq 2$, then circle will be darkened and the graph will be as shown along side:

Example 1: Given that $x \in R$, solve the following inequality and graph the solution on the number line : $-1 \leq 3+4 x<23$

Solution :

$$
\text { Given: } \begin{aligned}
- & 1 \leq 3+4 x<23 ; \quad x \in R \\
& -1 \leq 3+4 x \text { and } 3+4 x<23-3
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow-4 \leq 4 x \text { and } 4 x<20 \\
& \Rightarrow-1 \leq x \text { and } x<5 \\
& \Rightarrow-1 \leq x<5 ; x \in R
\end{aligned}
$$

Solution $=\{-1 \leq x<5 ; x \in R\}$
Solution on the number line is :

Example 2: Given $P=\{x: 5<2 x-1 \leq 11, x \in R\}$

$$
Q=\{x:-1 \leq 3+4 x<23, x \in I\}
$$

Where $\mathrm{R}=\{$ real numbers $\}$ and $\mathrm{I}=\{$ integers $\}$
Represent P and Q on two different number lines. Write down the elements of P and Q

Solution :

For P : $5<2 x-1<11$, where $x \in R$

$$
\Rightarrow 5<2 x-1 \text { and } 2 x-1 \leq 11
$$

$$
\Rightarrow 5+1<2 x \text { and } 2 x<11+1
$$

$$
\Rightarrow \frac{6}{2}<x \quad \text { and } 2 x<12
$$

$$
=x<\frac{12}{2}
$$

$$
\Rightarrow 3<x \quad x<6
$$

$$
\text { ie } 3<x \leq 6 ; x \in R
$$

$$
\begin{aligned}
& \text { For } \mathrm{Q}:-1 \leq 3+4 x<23 ; x \in I \\
& \qquad \begin{aligned}
-1 & \leq 3+4 x \text { and } 3+4 x<23
\end{aligned}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\quad-1 \leq x \text { and } x<5 \\
\text { ie }-1 \leq x<5 ; \text { where } x \in I \\
\mathrm{Q}=\underset{-4}{ }=\frac{1}{4}-2 \cdot 10
\end{array}\right)
$$

Hence $P \cap Q=\{$ elements common to both P and Q$\}$

$$
=\{4\}
$$

Example 3 : Find three smallest consecutive whole numbers such that the difference between one-fourth of the largest and one fifth of the smallest is at least 3

Solution : Let the required whole numbers $x, x+1$ and $x+2$
According to given statement :

$$
\begin{aligned}
& \Rightarrow \frac{x+2}{4}-\frac{x}{5} \geq 3 \\
& \Rightarrow \frac{5 x+10-4 x}{20} \geq 3 \\
& \Rightarrow x+10 \geq 60 \\
& \Rightarrow x \geq 50
\end{aligned}
$$

Since, the smallest value of $x=50$ that satisfies the inequation $x \geq 50$
\therefore Required smallest consecutive whole numbers are :

$$
\begin{aligned}
& x, x+1 \text { and } x+2 \\
& 50,50+1 \text { and } 50+2
\end{aligned}
$$

50, 51 and 52
Example 4 : The diagram, given below, represents two inequations P and Q on real number lines :

(i) Write down P and Q in set builder notation.
(ii) Represent each of the following sets on different number lines :
(a) $P \cup Q$
(b) $P \cap Q$
(c) $P-Q$
(d) Q - P
(e) $\mathrm{P} \cap \mathrm{Q}^{\prime}$
(f) $P^{\prime} \cap Q$

Solution :
(i) $P=\{x:-2<x \leq 6$ and $x \in R\}$ and

$$
Q=\{x: 2 \leq x<8 \text { and } x \in R\}
$$

(ii) (a) $\mathrm{P} \cup \mathrm{Q}=$ Numbers which belong to P or to Q or to both

(b) $\mathrm{P} \cap \mathrm{Q}=$ Numbers common to both P and Q

(c) $\mathrm{P}-\mathrm{Q}=$ Numbers which belong to P but do not belong to Q

(d) $\mathrm{Q}-\mathrm{P}=$ Numbers which belong to Q but do not belong to P

(e) $\mathrm{P} \cap \mathrm{Q}^{\prime}=$ Numbers which belong to P but do not belong to

$$
\mathrm{Q}=\mathrm{P}-\mathrm{Q}
$$

(f) $\mathrm{P}^{\prime} \cap \mathrm{Q}=$ Numbers which do not belong to P but belong to Q $=\mathrm{Q}-\mathrm{P}$

SOLVE THE FOLLOWING QUESTIONS:

Question 1 - Find the range of values of x, which satisfy:

$$
-\frac{1}{3} \leq \frac{x}{2}+1 \frac{2}{3}<5 \frac{1}{6}
$$

Graph, in each of the following cases, the values of x on the different real number lines:
(i) $x \in W$
(ii) $x \in Z$
(iii) $x \in R$

Question 2 - Given : $A=\{x:-8<5 x+2 \leq 17, x \in I\}$

$$
B=\{x:-2 \leq 7+3 x<17, x \in R\}
$$

Where $\mathrm{R}=\{$ real numbers $\}$ and $\mathrm{I}=\{$ integers $\}$
Represent A and B on two different number lines. Write down the elements of $\mathrm{A} \cap \mathrm{B}$.

Question 3 - Solve the following inequation and represent the solution set on the number line $2 x-5 \leq 5 x+4<11$, where $x \in I$.

Question 4 - Given that $x \in I$, solve the inequation and graph the solution on the number line:

$$
3 \geq \frac{x-4}{2}+\frac{x}{3} \geq 2
$$

Question 5 - Given :

$$
A=\{x: 11 x-5>7 x+3, x \in R\} \text { and }
$$

$B=\{x: 18 x-9 \geq 15+12 x, x \in R\}$
Find the range of set $A \cap B$ and represent it on a number line
Question 6 - Find the set of values of x, satisfying :
$7 x+3 \geq 3 x-5$ and $\frac{x}{4}-5 \leq \frac{5}{4}-x$, where $x \in N$
Question 7 - Solve :
(i) $\frac{x}{2}+5 \leq \frac{x}{3}+6$, where x is a positive odd integer
(ii) $\frac{2 x+3}{3} \geq \frac{3 x-1}{4}$, where x is a positive even integer

Question 8 - Solve the inequation :

$$
-2 \frac{1}{2}+2 x \leq \frac{4 x}{5} \leq \frac{4}{3}+2 x, \quad x \in W
$$

Graph the solution set on the number line.
Question 9 - Find three consecutive largest positive integers such that the sum of one-third of first, one-fourth of second and one-fifth of third is at most 20.

Question 10 - Solve the given inequation and graph the solution on the number line.
$2 y-3<y+1 \leq 4 y+7, y \in R$
Question 11 - Solve the following inequation and represent the solution set on the number line.

$$
-3<-\frac{1}{2}-\frac{2 x}{3} \leq \frac{5}{6}, x \in R
$$

Question 12 - Solve the following inequation and represent the solution set on the number line :

$$
4 x-19<\frac{3 x}{5}-2 \leq \frac{-2}{5}+x, x \in R
$$

Question 13 - Solve the following inequation, write the solution set and represent it on the number line:
$-\frac{x}{3} \leq \frac{x}{2}-1 \frac{1}{3}<\frac{1}{6}, x \in R$
Question 14 - Find the value of x, which satisfy the inequation $-2 \frac{5}{6}<\frac{1}{2}-\frac{2 x}{3} \leq 2, x \in W$. Graph the solution set on the number line.

Question 15 - Solve the following inequation and write the solution set:

$$
13 x-5<15 x+4<7 x+12, x \in R
$$

Represent the solution on a real number line.

